Revista ELECTRO
Vol. 46 – Año 2024
Artículo
TÍTULO
Control Proporcional Retardado con Compensación No Lineal Aplicado a un Péndulo Simple
AUTORES
Aguilar, O.C.; Ojeda-Misses, M.A.; Martínez-Arano, H.; López Morales, V.
RESUMEN
En este trabajo se presenta una metodología para el problema de control de seguimiento de un péndulo simple con un control Proporcional Retardad o (PR) con compensación no lineal que incluye el término de gravedad. La ventaja es evitar las mediciones de vel ocidad o su estimación, usado en la mayoría de los esquemas de control, como los controladores derivativos proporcionales y el control de par-torsión. El diseño del controlador se aborda mediante un análisis de σ-estabilidad y se valida su desempeño utiliz ando el modelo de un péndulo simple con un grado de libertad. El controlador propuesto es simulado para la regulación y el seguimiento de trayectoria. Los resultados se analizan desde una perspectiva de frecuencia y s e mide el desempeño mediante el error cuadrático medio.
Palabras Clave: péndulo simple, retardo, seguimiento de trayectoria, no lineal, control.
ABSTRACT
In this work a methodology is presented for the tracking control problem of a simple pendulum through Retarded Proportional controller with nonlinear compensation that includes the gravity term. The main advantage of the proposal is to avoid the need for speed measurements or its estimation, which is commonly used in most control schemes, such as proportional deri vative controllers and torque control. The design of the controller is approached using a σ-stability analysis and its performance is tested using the model of a simple pendulum with one degree of freedom. The proposed controller is tested by regulation an d trajectory tracking. The results are analyzed from a frequency perspective and are measured by the mean square error.
Keywords: simple pendulum, delay, trajectory tracking, no n-linear, control.
REFERENCIAS
[1] B. Paden and R. Panja, ‘‘Globally asymptotically stable ‘PD+’ controller for robot manipulators,’’ Int. J. Control, vol. 47, no. 6, 1988.
[2] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control, vol. 3. New York, NY, USA: Wiley, 2006.
[3] A. Zavala-Río, E. Aguiñaga-Ruiz, and V. Santibáñez, ‘‘Global trajectory tracking through output feedback for robot manipulators with bounded inputs,’’ Asian J. Control, vol. 13, no. 3, pp. 430 –438, 2011.
[4] J. Bowkett and R. Mukhe rjee, ‘‘Comparison of control methods for twolink planar flexible manipulator,’’ in Proc. Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. New York, NY, USA: ASME, 2017, pp. 1 –10.
[5] Y. Si, J. Pu, and L. Sun, ‘‘A fast terminal sliding mode control of twolin k flexible manipulators for trajectory tracking,’’ in Proc. Chin. Automat. Congr. (CAC), 2017, pp. 6387 –6391.
[6] J. Z. Sąsiadek, S. Ulrich, and A. Krzyżak, ‘‘Trajectory tracking and nonparametric identification of flexible space robot manipulators,’’ in Proc. 23rd Int. Conf. Methods Models Automat. Robot. (MMAR), Aug. 2018, pp. 83 –88.
[7] Z.-C. Qiu, C. Li, and X.-M. Zhang, ‘‘Experimental study on active vibration control for a kind of two-link flexible manipulator,’’ Mech. Syst. Signal Process., vol. 118, pp. 623 –644, Mar. 2019.
[8] K. Lochan, J. P. Singh, B. K. Roy, and B. Subudhi, ‘‘Hidden chaotic path planning and control of a two-link flexible robot manipulator,’’ in Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors. Cham, Switzerland: Springer, 2018, pp. 433 –463.
[9] S. T. Wu, S.-Q. Tang, and K.-P. Huang, ‘‘Vibration attenuation of a twolink flexible arm carried by a translational stage,’’ J. Vib. Control, vol. 24, no. 23, pp. 1 –15, 2018.
[10] H. Berghuis and H. Nijmeijer, ‘‘Robust control of robots usi ng only position measurements,’’ IFAC Proc., vol. 26, no. 2, pp. 329 –334, 1993.
[11] C. C. De Wit and N. Fixot, ‘‘Robot control via robust estimated state feedback,’’ IEEE Trans. Autom. Control, vol. 36, no. 12, pp. 1497 –1501
[12] R. Kelly, ‘‘A simple set-point robo t controller by using only position measurements,’’ IFAC Proc. Vol., vol. 26, no. 2, pp. 527 –530, 1993.
[13] R. M. May, ‘‘Time-delay versus stability in population models with two and three trophic levels,’’ Ecology, vol. 54, no. 2, pp. 315 –325, 1973.
[14] V. L. K haritonov and A. P. Zhabko, ‘‘Lyapunov –Krasovskii approach to the robust stability analysis of time-delay systems,’’ Automatica, vol. 39, no. 1, pp. 15 –20, 2003.
[15] K. Gu, K. L. Vladimir, and J. Chen, Stability of Time-Delay Systems. Berlin, Germany: Springer, 2003.
[16] E. Fridman, Introduction to Time-Delay Systems: Analysis and Control. Basel, Germany: Birkhäuser, 2014.
[17] S. I. Niculescu, Delay Effects on Stability: A Robust Control Approach, vol. 269. New York, NY, USA: Springer, 2001.
[18] C. Abdallah, P. Dorato, J. Benites-Read, and R. Byrne, ‘‘Delayed positive feedback can stabilize oscillatory systems,’’ in Proc. Amer. Control Conf., Jun. 1993, pp. 3106 –3107.
[19] C. Abdallah, P. Dorato, J. Benites-Read, and R. Byrne, ‘‘Delayed positive feedback can stabilize oscillat ory systems,’’ in Proc. Amer. Control Conf., Jun. 1993, pp. 3106 –3107.
[20] R. Villafuerte and S. Mondié, ‘‘Tuning the leading roots of a second order DC servomotor with proportional retarded control,’’ IFAC Proc. Vol., vol. 43, no. 2, pp. 337 –342, 2010.
[21] S. Mo ndie, R. Villafuerte, and R. Garrido, ‘‘Tuning and noise attenuation of a second order system using proportional retarded control,’’ IFAC Proc. Vol., vol. 44, no. 1, pp. 10337 –10342, 2011.
[22] R. Villafuerte, S. Mondié, and R. Garrido, ‘‘Tuning of proportional retarded controllers: Theory and experiments,’’ IEEE Trans. Control Syst. Technol., vol. 21, no. 3, pp. 983 –990, May 2013.
[23] T. Ortega-Montiel, R. Villafuerte-Segura, C. Vázquez-Aguilera, and L. Freidovich, ‘‘Proportional retarded controller to stabilize u nderactuated systems with measurement delays: Furuta pendulum case study,’’ Math. Problems Eng., vol. 2017, Dec. 2017, Art. no. 2505086
[24] T. Ortega-Montiel, R. Villafuerte-Segura, C. Vázquez-Aguilera, and L. Freidovich, ‘‘Proportional retarded controller to stabilize underactuated systems with measurement delays: Furuta pendulum case study,’’ Math. Problems Eng., vol. 2017, Dec. 2017, Art. no. 2505086.
[25] M. Ramírez-Neria, G. Ochoa-Ortega, A. Luviano-Juárez, N. Lozada-Castillo, M. A. Trujano-Cabrera and J. P. Ca mpos-López, "Proportional Retarded Control of Robot Manipulators," in IEEE Access, vol. 7, pp. 13989-13998, 2019, doi: 10.1109/ACCESS.2019.2892414.
[26] Hale, J. K., Sjoerd M., Verduyn, L. Introduction to funcional differential equations, 1st ed. NewYork: Springer-Verlag, 1993.
[27] Neimark, J. D-subdivisions and spaces of quasipolynomials. Prikl. Mat. Mekh. 1949, 13(5):349 –80.
[28] Michiels W, Niculescu S. I. Stability and stabilization of time-delay systems: an eigenvalue-based approach.1sted. Philadelphia: SIAM, 2007.
[29] R. A. Zaldivar-López, M Ojeda-Misses, "Controlador Proporcional Integral Posicast Robusto para una clase de sistema lineal invariante en el tiempo de segundo orden", Ingeniería Investigación y Tecnología (México), 04, 1-10, 010,2023. https://doi.org/10.22201/fi.25940732e.2023.24.4.027
CITAR COMO:
Aguilar, O.C.; Ojeda-Misses, M.A.; Martínez-Arano, H.; López Morales, V., "Control Proporcional Retardado con Compensación No Lineal Aplicado a un Péndulo Simple", Revista ELECTRO, Vol. 46, 2024, pp. 91-96 .
VERSIÓN PDF