Revista ELECTRO
Vol. 46 – Año 2024
Artículo
TÍTULO
Implementación de una Función de Enfoque para Imágenes Migradas en Radares de Penetración Terrestre
AUTORES
Rentería-Manjarrez, R.; Ortiz-Carrasco, C.; Gaxiola-Sánchez, O.I.
RESUMEN
En este trabajo, se propone una función que captura las variaciones, debidas a los cambios en la parte real de la permitividad relativa y la conductividad, en la imagen migrada mediante el método de Suma Hiperbólica. La función propuesta es probad a con imágenes GPR generadas en simulaciones y en experimentos en entorno de laboratorio. Para las simulaciones se implementó un programa en Python basado en el método de diferencias finitas en el dominio del tiempo (FDTD). Para los experimentos se utilizó un sistema de alta frecuencia que opera de 3.5𝑮𝑯𝒛 a 𝟗𝑮𝑯𝒛 en un entorno de laboratorio. Adicionalmente, se incluye una metodología para mejorar la calidad de las imágenes crudas mediante la corrección de tiempo-cero y la identificación de hipérbolas de reflexión. Los datos de simulación y en experimento demuestran que la función propuesta fue implementada e xitosamente permitiendo identificar los cambios en la parte real de la permitividad relativa y la conductividad.
Palabras Clave: Procesamiento de imágenes, Métricas de enfoque, GPR, Propiedades dieléctricas.
ABSTRACT
This work presents a function that c aptures variations due to changes in the real part of the relative permittivity and conductivity in the migrated image using the Hyperbolic Sum method. The proposed function is tested with GPR images generated through simulations and laboratory experiments. For the simulations, a Python program based on the Finite-Difference Time-Domain (FDTD) method is implemented. For the experiments, a high-frequency system operating from 3.5 GHz to 9 GHz is used in a laboratory environment. Additionally, a methodology t o enhance the quality of raw images through time-zero correction and the identification of reflection hyperbolas is included. The simulation and experimental data demonstrate that the proposed function is successfully implemented, enabling the identificati on of changes in the real part of the relative permittivity and conductivity.
Keywords: Image Processing, Focus metrics, GPR, Dielectric Properties
REFERENCIAS
[1] A. Osella and J. L. Lanata, Archaeogeophysics: An interdisciplinary methodology to explore the past, 1st ed. Buenos Aires, República Argentina: Felix de Azara Natural History Foundation, 2006.
[2] İ. Kaplanvural, “Volumetric water content estimation of concrete by particle swarm optimization of GPR data,” Constr Build Mater, vol. 375, Apr. 2023, doi: 10.1016/j.conbuildmat.2023.130995.
[3] H. M. Jol, Ground penetrating radar: theory and applications, 1st ed. Amsterdam, The Netherlands: Elsevier B.V., 2009. doi: 10.1016/B978-1-4160-5009-4.50004-2.
[4] D. M. Pozar, Microwave Engineering, 4th ed., vol. 148. Massachusetts, United States: John Wiley & Sons, Inc., 2012.
[5] A. K. Khamzin, A. V. Varnavina, E. V. Torgashov, N. L. Anderson, and L. H. Sneed, “Utilization of air-launched ground penetrating radar (GPR) for pavement condition assessment,” Constr Build Mater, vol. 141, pp. 130 –139, 2017, doi: 10.1016/j.conbuildmat.2017.02.105.
[6] J. E. Nyquist, L. Toran, L. Pitman, L. Guo, and H. Lin, “Testing the Fill-and-Spill Model of Subsurface Lateral Flow Using Ground-Penetrating Radar and Dye Tracing,” Vadose zone journal, vol. 17, p. 170142, 2018, doi: 10.2136/v.
[7] A. Lundberg, C. Richardson-Näslund, and C. Andersson, “Snow density variations: Consequences for ground-penetrating radar,” Hydrol Process, vol. 20, no. 7, pp. 1483 –1495, 2006, doi: 10.1002/hyp.5944.
[8] J. R. Dujardin and M. Bano, “Topographic migration of GPR data: Examples from Chad and Mongol ia,” Comptes Rendus-Geoscience, vol. 345, no. 2, pp. 73 –80, 2013, doi: 10.1016/j.crte.2013.01.003.
[9] R. L. Morrison, M. N. Do, and D. C. Munson, “SAR image autofocus by sharpness optimization: A theoretical study,” IEEE Transactions on Image Processing, vol. 16, no. 9, pp. 2309 –2321, Sep. 2007, doi: 10.1109/TIP.2007.903252.
[10] J. R. Fienup, “Synthetic-aperture radar autofocus by maximizing sharpness,” in OPTICS LETTERS, 2000. doi: 10.1364/OL.25.000221.
[11] L. X. Liu Guosui and S. Member, “Autofocusin g of ISAR Images Based on Entropy Minimization,” IEEE Trans Aerosp Electron Syst, vol. 35, no. 4, pp. 1240 –1252, Oct. 1990, doi: 10.1109/7.805442.
[12] A. Paupolis, P. J. Swerling, I. S. Sokolnikoff, E. S. Sokolnikoff, and P. Rohan, “Autofocusing of Invers e Synthetic Aperture Radar Images Using Contrast Optimization,” IEEE Trans Aerosp Electron Syst, vol. 27, no. 9, p. 56, 1991, doi: 10.1109/7.532282.
[13] F. Ahmad, M. G. Amin, and G. Mandapati, “Autofocusing of through-the-wall radar imagery under unknown wall characteristics,” IEEE Transactions on Image Processing, vol. 16, no. 7, pp. 1785 –1795, Jul. 2007, doi: 10.1109/TIP.2007.899030.
[14] H. Zhou, X. Wan, W. Li, and Y. Jiang, “Combining F-K filter with minimum entropy Stolt migration algorithm for subsurface object imaging and background permittivity estimation,” Procedia Eng, vol. 23, pp. 636 –641, 2011, doi: 10.1016/j.proeng.2011.11.2558.
[15] D. Feng, T. Li, G. Li, and X. Wang, “Reverse time migration of GPR data based on accurate velocity estimation and artifacts removal using total variation de-noising,” J Appl Geophy, vol. 198, no. December 2021, p. 104563, 2022, doi: 10.1016/j.jappgeo.2022.104563.
[16] X. Wei and Y. Zhang, “Autofocusing techniques for GPR data from RC bridge decks,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 7, no. 12, pp. 4860 –4868, Dec. 2014, doi: 10.1109/JSTARS.2014.2321710.
[17] J. E. Houle and D. M. Sullivan, “Electromagneti c simulation using the FDTD method with python,” Electromagnetic Simulation Using the FDTD Method with Python, pp. 1 –198, 2020, doi: 10.1002/9781119565826.
[18] “2D electromagnetic simulator,” PyPi. Accessed: Jul. 01, 2024. [Online]. Available: https://pyp i.org/project/em-simulation/
[19] H. Zadhoush and A. Giannopoulos, “Optimizing GPR time-zero adjustment and two-way travel time wavelet measurements using a realistic three-dimensional numerical model,” Near Surface Geophysics, vol. 20, no. 2, pp. 208 –226, 2022, doi: 10.1002/nsg.12193.
[20] W. Lei et al., “Automatic hyperbola detection and fitting in GPR B-scan image,” Autom Constr, vol. 106, Oct. 2019, doi: 10.1016/j.autcon.2019.102839.
[21] C. Özdemir, Ş. Demirci, E. Yiǧit, and B. Yilmaz, “A review on migration methods in B-scan ground penetrating radar imaging,” Math Probl Eng, p. 16, 2014, doi: 10.1155/2014/280738.
CITAR COMO:
Rentería-Manjarrez, R.; Ortiz-Carrasco, C.; Gaxiola-Sánchez, O.I., "Implementación de una Función de Enfoque para Imágenes Migradas en Radares de Penetración Terrestre", Revista ELECTRO, Vol. 46, 2024, pp. 339-344.
VERSIÓN PDF