<- Atrás

Revista ELECTRO

Vol. 46 – Año 2024

Artículo

TÍTULO

Surveillance Two-Wheel Mobile Robot for People and Obstacle Detection in Restricted Areas

AUTORES

Vega-Luna, J.I.; Cosme-Aceves, J.F.; Salgado-Guzmán, G.; Sánchez-Rangel, F.J.; Tapia-Vargas, V.N.; Rodríguez-Tapia, V.G.; Andrade-González, E.A.

RESUMEN

Se presenta el desarrollo de un robot que sigue una línea, marcada en el perímetro de un laboratorio, cuyo objetivo fue que, al encontrar un obstáculo en el recorrido, capture la imagen frontal, marque en ella el objeto detectado y la envíe a una plataform a de Internet de las Cosas, así como al teléfono móvil del responsable del laboratorio. El funcionamiento del robot está controlado por un sistema embebido Raspberry Pi 5. Cuenta con un sistema de sensores infrarrojos que le permiten seguir la línea y un s ensor ultrasónico a través del cual determina la distancia al obstáculo. Incorpora una cámara de vídeo de 12.3 megapíxeles y un puente H para controlar los motores de las ruedas. La programación se realizó en Python con la biblioteca OpenCV. Las pruebas realizadas demostraron que el robot tiene una precisión del 9 8.4% en la detección de objetos y personas.

Palabras Clave: Cámara de video, Internet de las Cosas, OpenCV, Python, Raspberry Pi, robot

ABSTRACT

This study presents the development of a robot that follows a line, marked on the perimeter of a laboratory, whose objective was that, when encountering an obstacle on the route, it captures the frontal image, marks the detected object on it and sends it to an Internet of Things platform, as well as th e mobile phone of the person in charge of the laboratory. The operation of the robot is controlled by a Raspberry Pi 5 embedded system. It has a system of infrared sensors that allow it to follow the line and an ultrasonic sensor through which it determine s the distance to the obstacle. It incorporates a 12.3-megapixel video camera and an H-bridge to control the wheel motors. Programming was done in Python with OpenCV library. The tests carried out showed that the robot has an accuracy of 9 8,4% in detecting objects and people.

Keywords: Internet of Things, OpenCV, Python, Raspberry Pi, robot, video camera

REFERENCIAS

[1] L.-H. Shen, A.-H. Hsiao, F.-Y. Chu and K.-T. Feng, "Time-Selective RNN for Device-Free Multiroom Human Presence Detection Using WiFi CSI," in IEEE Transactio ns on Instrumentation and Measurement, vol. 73, pp. 1-17, 2024, Art no. 2505817, doi: 10.1109/TIM.2023.3348887.
[2] J.-E. Kim, J.-H. Choi and K.-T. Kim, "Robust Detection of Presence of Individuals in an Indoor Environment Using IR-UWB Radar," in IEEE Acces s, vol. 8, pp. 108133-108147, 2020, doi: 10.1109/ACCESS.2020.3000796.
[3] L. Wu, F. Gou, S.-T. Wu and Y. Wang, "SLEEPIR: Synchronized Low-Energy Electronically Chopped PIR Sensor for True Presence Detection," in IEEE Sensors Letters, vol. 4, no. 3, pp. 1-4, M arch 2020, Art no. 2500204, doi: 10.1109/LSENS.2020.2976801.
[4] L. Wu, F. Gou, S.-T. Wu and Y. Wang, "SLEEPIR: Synchronized Low-Energy Electronically Chopped PIR Sensor for True Presence Detection," in IEEE Sensors Letters, vol. 4, no. 3, pp. 1-4, March 2020, Art no. 2500204, doi: 10.1109/LSENS.2020.2976801.
[5] X. Liang et al., "Purely Image-Based Pose Stabilization of Nonholonomic Mobile Robots With a Truly Uncalibrated Overhead Camera," in IEEE Transactions on Robotics, vol. 36, no. 3, pp. 724-742, June 2020, doi: 10.1109/TRO.2019.2961052.
[6] A. Stefek, T. V. Pham, V. Kriv anek and K. L. Pham, "Energy Comparison of Controllers Used for a Differential Drive Wheeled Mobile Robot," in IEEE Access, vol. 8, pp. 170915-170927, 2020, doi: 10.1109/ACCESS.2020.3023345.
[7] Y. Zhang, L. Zhang, W. Wang, Y. Li and Q. Zhang, "Design and Impl ementation of a Two-Wheel and Hopping Robot With a Linkage Mechanism," in IEEE Access, vol. 6, pp. 42422-42430, 2018, doi: 10.1109/ACCESS.2018.2859840.
[8] Y. Huang and J. Su, "Visual Servoing of Nonholonomic Mobile Robots: A Review and a Novel Perspective," i n IEEE Access, vol. 7, pp. 134968-134977, 2019, doi: 10.1109/ACCESS.2019.2941962.
[9] X. Deng, J. Liu, H. Gong, H. Gong and J. Huang, "A Human –Robot Collaboration Method Using a Pose Estimation Network for Robot Learning of Assembly Manipulation Trajectories F rom Demonstration Videos," in IEEE Transactions on Industrial Informatics, vol. 19, no. 5, pp. 7160-7168, May 2023, doi: 10.1109/TII.2022.3224966.
[10] W. Li, L. Ding, H. Gao and M. Tavakoli, "Haptic Tele-Driving of Wheeled Mobile Robots Under Nonideal Wheel Ro lling, Kinematic Control and Communication Time Delay," in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 1, pp. 336-347, Jan. 2020, doi: 10.1109/TSMC.2017.2738670.
[11] S. Lee et al., "Design and Implementation of a Two-Wheeled Inver ted Pendulum Robot With a Sliding Mechanism for Off-Road Transportation," in IEEE Robotics and Automation Letters, vol. 8, no. 7, pp. 4004-4011, July 2023, doi: 10.1109/LRA.2023.3279585.
[12] X. Niu, Y. Wu and J. Kuang, "Wheel-INS: A Wheel-Mounted MEMS IMU-Base d Dead Reckoning System," in IEEE Transactions on Vehicular Technology, vol. 70, no. 10, pp. 9814-9825, Oct. 2021, doi: 10.1109/TVT.2021.3108008.
[13] M. Cui, "Observer-Based Adaptive Tracking Control of Wheeled Mobile Robots With Unknown Slipping Parameters," in IEEE Access, vol. 7, pp. 169646-169655, 2019, doi: 10.1109/ACCESS.2019.2955887.
[14] S.-K. Kim, C. K. Ahn and R. K. Agarwal, "Observer-Based Proportional-Type Controller for Two-Wheeled Mobile Robots via Simple Coordinate Transformation Technique," in IEEE Transactions on Vehicular Technology, vol. 70, no. 11, pp. 11458-11468, Nov. 2021, doi: 10.1109/TVT.2021.3116296.
[15] H. Qi et al., "Control Strategy for the Pseudo-Driven Wheels of Multi-Wheeled Mobile Robots Based on Dissociation by Degrees-of-Freedom," in I EEE Access, vol. 8, pp. 155477-155491, 2020, doi: 10.1109/ACCESS.2020.3019342.
[16] T. Liu, C. Zhang, J. Wang, S. Song and M. Q.-H. Meng, "Towards Terrain Adaptablity: In Situ Transformation of Wheel-Biped Robots," in IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3819-3826, April 2022, doi: 10.1109/LRA.2022.3148486.
[17] X. Li, Z. Xu, Z. Su, H. Wang and S. Li, "Distance-and Velocity-Based Simultaneous Obstacle Avoidance and Target Tracking for Multiple Wheeled Mobile Robots," in IEEE Transactions on Inte lligent Transportation Systems, vol. 25, no. 2, pp. 1736-1748, Feb. 2024, doi: 10.1109/TITS.2023.3312373.
[18] Y. Sun et al., "Design and Experimental Evaluation of a Multi-Mode Mobile Robot Based on Eccentric Paddle Mechanism," in IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 8607-8614, Oct. 2021, doi: 10.1109/LRA.2021.3112757.
[19] J. Kim, "Trajectory Generation of a Two-Wheeled Mobile Robot in an Uncertain Environment," in IEEE Transactions on Industrial Electronics, vol. 67, no. 7, pp. 5586-5594, July 2020, doi: 10.1109/TIE.2019.2931506.
[20] J. V. Salazar Luces, S. Matsuzaki and Y. Hirata, "RoVaLL: Design and Development of a Multi-Terrain Towed Robot With Variable Lug-Length Wheels," in IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6017-6024, Oc t. 2020, doi: 10.1109/LRA.2020.3010495.
[21] S. Lee, "An Efficient Coverage Area Re-Assignment Strategy for Multi-Robot Long-Term Surveillance," in IEEE Access, vol. 11, pp. 33757-33767, 2023, doi: 10.1109/ACCESS.2023.3260622.
[22] J. Scherer and B. Rinner, "Multi-Robot Persistent Surveillance With Connectivity Constraints," in IEEE Access, vol. 8, pp. 15093-15109, 2020, doi: 10.1109/ACCESS.2020.2967650. Revista ELECTRO, Vol. 46, 2024, pp. 374-380 https://itchihuahua.mx/revista_electro ISSN Electrónico: 3061-774X 380
[23] J. Scherer, A. P. Schoellig and B. Rinner, "Min-Max Vertex Cycle Covers With Connectivity Constraints for Multi-Robot Patrolling," in IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10152-10159, Oct. 2022, doi: 10.1109/LRA.2022.3193242.
[24] L. Guerrero-Bonilla and D. V. Dimarogonas, "Perimeter Surveillance Based on Set-Invariance," in IEEE Robotics and Automation Letters, vol. 6, no. 1, pp. 9-16, Jan. 2021, doi: 10.1109/LRA.2020.3028055.
[25] X. Duan, D. Paccagnan and F. Bullo, "Stochastic Strategies for Robotic Surveillance as Stackelberg Games," in IEEE Transactions on Control of Network Systems, vol. 8, no. 2, pp. 7 69-780, June 2021, doi: 10.1109/TCNS.2021.3058932.
[26] W. Hou, Z. Wei, X. Zhu, J. Cao and Y. Jiang, "Toward Proximity Surveillance and Data Collection in Industrial IoT: A Multi-Stage Statistical Optimization Design," in IEEE Wireless Communications Letters, vol. 13, no. 6, pp. 1536-1540, June 2024, doi: 10.11 09/LWC.2024.3376774.
[27] S. C. Sethuraman, P. Kompally and S. Reddy, "VISU: A 3-D Printed Functional Robot for Crowd Surveillance," in IEEE Consumer Electronics Magazine, vol. 10, no. 1, pp. 17-23, 1 Jan. 2021, doi: 10.1109/MCE.2020.3029769.
[28] M. Aggravi, G. Sir ignano, P. R. Giordano and C. Pacchierotti, "Decentralized Control of a Heterogeneous Human –Robot Team for Exploration and Patrolling," in IEEE Transactions on Automation Science and Engineering, vol. 19, no. 4, pp. 3109-3125, Oct. 2022, doi: 10.1109/TASE. 2021.3106386.
[29] J. P. Queralta et al., "Collaborative Multi-Robot Search and Rescue: Planning, Coordination, Perception, and Active Vision," in IEEE Access, vol. 8, pp. 191617-191643, 2020, doi: 10.1109/ACCESS.2020.3030190.

CITAR COMO:

Vega-Luna, J.I.; Cosme-Aceves, J.F.; Salgado-Guzmán, G.; Sánchez-Rangel, F.J.; Tapia-Vargas, V.N.; Rodríguez-Tapia, V.G.; Andrade-González, E.A., "Surveillance Two-Wheel Mobile Robot for People and Obstacle Detection in Restricted Areas", Revista ELECTRO, Vol. 46, 2024, pp. 374-380.

VERSIÓN PDF

(Abrir archivo PDF en una nueva pestaña)