SIMULACIÓN DE UN AEROGENERADOR PEQUEÑO

Juárez-Hernández Edgar Uriel, Romero-Herrera Rodolfo Instituto Politécnico Nacional - ESCOM Sección de Estudios de Posgrado e Investigación Ciudad de México, México Tel.,555729600 ext. 52040

e-mail: ejuarez1500@alumno.ipn.mx, rromeroh@ipn.mx

RESUMEN.

Los aerogeneradores operan capturando la energía del viento con sus palas del rotor, que están conectadas a un eje que genera energía mecánica. Esta energía se convierte en electricidad a través de un generador. Los componentes principales incluyen el rotor, la nacelle, el generador, la torre y el sistema de control. Algunos de los beneficios son: Energía renovable y limpia, reducción de emisiones de CO2, bajos costos operativos después de la instalación, fomento del desarrollo tecnológico. A pesar de sus beneficios, el uso residencial de turbinas eólicas de pequeña escala está limitado por factores como la baja velocidad del viento, la turbulencia y el ruido aerodinámico, además de su alto costo inicial. Sin embargo, los avances tecnológicos han reducido estos costos, incrementando su aplicación en casa habitación. En este trabajo se presenta la simulación de un aerogenerador pequeño, junto con el diseño de sus piezas adaptadas para impresión 3D, lo que proporciona flexibilidad en el desarrollo de nuevos prototipos y reducción de costos. Es importante seleccionar materiales duraderos y asegurarse de que las impresoras 3D utilizadas tengan buena precisión. Los aerogeneradores de pequeña escala son una solución prometedora para la generación de energía renovable en entornos residenciales y comerciales. Aunque existen limitaciones como la baja velocidad del viento y altos costos iniciales, los avances tecnológicos y las soluciones innovadoras están mejorando su viabilidad y eficiencia. Su desarrollo demuestra su potencial en la independencia energética y sostenibilidad ambiental.

Palabras clave: Aerogeneradores, energía eólica, energía renovable, eficiencia energética, innovación tecnológica.

ABSTRACT.

Wind turbines operate by capturing energy from the wind with their rotor blades, which are connected to a shaft that generates mechanical energy. This energy is converted into electricity through a generator. The main components include the rotor, nacelle, generator, tower and control system. Some of the benefits are: Renewable and clean energy, reduced CO2 emissions, and low operating costs after installation, encouraging technological development. Despite their benefits, residential use of small-scale wind turbines is limited by factors such as low wind speed, turbulence and aerodynamic noise, in addition to their high initial cost. However, technological advances have reduced these costs, increasing their application in homes. This paper shows the simulation of a wind turbine, and the design of the printer parts according to the simulation, which offers flexibility and cost reduction. The parts can be customized to specific needs and

rapidly prototyped. It is important to select durable materials and ensure that the 3D printers used have good accuracy. Small-scale wind turbines are a promising solution for renewable energy generation in residential and commercial settings. Although there are limitations such as low wind speed and high initial costs, technological advances and innovative solutions are improving their feasibility and efficiency. Their development demonstrates their potential for energy independence and environmental sustainability.

Keywords: Wind turbines, wind energy, renewable energy, energy efficiency, technological innovation.

1. INTRODUCCIÓN

Un aerogenerador funciona bajo el principio de la energía eólica, que aprovecha la energía del viento para mover las palas del rotor. Este rotor está conectado a un eje que, al girar, genera energía mecánica. Un generador convierte esta energía mecánica en energía eléctrica [1] [2].

Beneficios:

- 1. **Energía Renovable**: Utilizan una fuente de energía inagotable y limpia.
- 2. **Reducción de Emisiones**: Disminuyen la dependencia de combustibles fósiles y reducen las emisiones de CO2.
- Costos Operativos Bajos: Después de la instalación, los costos de operación y mantenimiento son relativamente bajos.
- 4. **Desarrollo Tecnológico**: Fomentan la innovación y el avance en tecnologías de energías renovables.

Las turbinas eólicas de pequeña escala son prometedoras para la generación de energía renovable [3], pero su uso residencial es limitado por la baja velocidad del viento, alta turbulencia y ruido aerodinámico, además de su alto costo [4]. Sin embargo, los avances tecnológicos han reducido costos, aumentando su aplicación en lugares como en zonas potenciales de México, donde las turbinas pequeñas tienen gran potencial para hogares y negocios [5]. Para mejorar la eficiencia de las microturbinas eólicas, se propone un controlador inteligente que adapte la velocidad del generador según el viento [6]. Además, se exploran alternativas como colocar turbinas a lo largo de vías de tren para

aprovechar la energía del viento generado por el paso de trenes en India [7]. También se presenta una turbina autónoma que genera electricidad y calor, optimizando el uso del viento en hogares [8].

2. DESARROLLO DEL PROBLEMA 2.1. Variabilidad del viento

Uno de los principales desafíos de los aerogeneradores es la variabilidad del viento. La velocidad y la dirección del viento no son constantes, lo que puede afectar la generación de energía. Este problema requiere un análisis del sitio para asegurar que la ubicación seleccionada tenga un recurso eólico adecuado [9].

 Solución Propuesta: Realizar estudios de viento a largo plazo y utilizar sistemas de predicción meteorológica avanzada. Además, la implementación de parques eólicos en diversas ubicaciones puede ayudar a equilibrar la variabilidad del viento.

2.2. Impacto ambiental

La instalación de aerogeneradores puede tener impactos ambientales significativos. Estos incluyen la alteración del hábitat de la vida silvestre, el ruido, y el impacto visual en el paisaje.

 Solución Propuesta: Llevar a cabo estudios de impacto ambiental y diseñar los proyectos para minimizar estos impactos. Esto puede incluir la selección cuidadosa de sitios, el uso de tecnologías de reducción de ruido y la implementación de medidas de mitigación para la vida silvestre.

2.3. Costos Iniciales

Los costos iniciales de los aerogeneradores son altos. La inversión en la infraestructura necesaria para la instalación y conexión a la red eléctrica puede ser significativa.

 Solución Propuesta: Utilizar incentivos gubernamentales, subsidios y financiamiento a bajo interés para reducir el impacto financiero inicial. Además, la economía de escala en proyectos de parques eólicos puede ayudar a disminuir los costos unitarios.

2.4. Integración de la red eléctrica

La integración de la energía generada por aerogeneradores a la red eléctrica puede ser un desafío debido a la intermitencia y la variabilidad de la producción.

• Solución Propuesta: Implementar sistemas de almacenamiento de energía y tecnologías de red inteligente para manejar la variabilidad y asegurar un suministro constante de electricidad. Además, la diversificación de fuentes de energía renovable puede mejorar la estabilidad de la red.

2.5. Avance tecnológico

La tecnología de los aerogeneradores está en constante evolución. Mantenerse al día con las últimas innovaciones y mejoras tecnológicas puede ser un desafío para los desarrolladores y operadores.

 Solución Propuesta: Invertir en investigación y desarrollo para mejorar la eficiencia y la fiabilidad de los aerogeneradores. Colaborar con instituciones académicas y empresas tecnológicas puede acelerar la adopción de nuevas tecnologías

3. HERRAMIENTAS PARA EL DISEÑO

3.1. Componentes principales

Los aerogeneradores pequeños son dispositivos diseñados para generar electricidad a partir del viento en un entorno doméstico. Estos sistemas son una excelente opción para aquellos interesados en la energía renovable y en reducir su dependencia de la red eléctrica convencional [10]. Los componentes clave sobre los aerogeneradores pequeños son:

- Rotor: Consta de las palas que capturan el viento y lo convierten en energía rotacional.
- Generador: Convierte la energía rotacional en electricidad.
- 3. **Torre**: Estructura que sostiene el rotor y el generador en una posición elevada.
- Controlador de carga: Regula la energía generada y la almacena en las baterías.
- 5. **Baterías**: Almacenan la energía generada para su uso posterior.
- 6. **Inversor**: Convierte la corriente continua almacenada en las baterías en corriente alterna, que es la que utilizan la mayoría de los electrodomésticos.

3.2. Pasos para Construir un Aerogenerador pequeño

Diseño y planificación: Determina la capacidad y el tamaño del aerogenerador según tus necesidades energéticas y la velocidad del viento en tu área.

Adquisición de materiales: Palas (pueden ser de PVC, madera, o metal), generador (motor de corriente continua o alterna), torre (puede ser de metal o madera), controlador de carga, inversor, y baterías.

Construcción del rotor: Se ensamblan las palas al generador. Las palas deben estar bien equilibradas para evitar vibraciones. Montaje de la torre: Debe asegurarse que la torre sea lo suficientemente alta para capturar vientos constantes y que esté

Instalación del generador y rotor: Se monta el generador con el rotor en la parte superior de la torre.

Conexiones eléctricas: Se conecta el generador al controlador de carga y este a las baterías. Luego, conecta las baterías al inversor.

Pruebas y ajustes: Se verifica que todo funcione correctamente y se realiza los ajustes según sea necesario

4. IMPLEMENTACIÓN DE LA SIMULACIÓN

4.1. Curva de potencia

bien anclada al suelo.

El método para caracterizar el aerogenerador se realizó en matlab, obteniendo datos del comportamiento del motor y usando datos aleatorios congruentes con las características ambientales normales; se desarrollaron una serie de gráficas con las cuales se puede predecir el comportamiento del sistema en diferentes situaciones.

Aplicando velocidades rotacionales al motor se obtuvo la curva característica de potencia con respecto a su velocidad.



Fig. 1 Curva de potencia.

4.2. Gráfica de la frecuencia relativa

La frecuencia relativa es una herramienta fundamental para optimizar el diseño, la eficiencia y la viabilidad económica de los aerogeneradores, así como para asegurar una integración efectiva y estable en la red eléctrica. La figura 2 muestra la simulación gráfica de frecuencia de las velocidades promedio en un día.

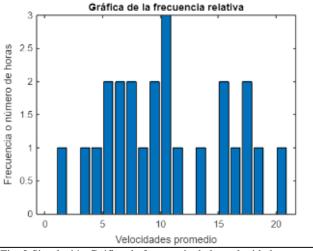


Fig. 2 Simulación Gráfica de frecuencia de las velocidades promedio en un día.

4.3. Onda de potencia

Usando métodos numéricos, en específico el método de mínimos cuadrados, se grafica la curva característica de la entrega de potencia del aerogenerador con respecto a su velocidad rotacional, obteniendo la función polinomial de esa curva.

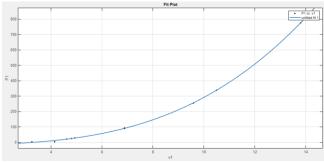


Fig. 3 Caracterización de onda de potencia con respecto a la velocidad.

5. DISEÑO DE LA PIEZAS EN IMPRESORA 3D

Las piezas del aerogenerador se diseñaron y fabricaron utilizando una impresora 3D. La impresión 3D ofrece flexibilidad en el diseño y la posibilidad de crear componentes personalizados y prototipos a bajo costo. En la figura 4 se muestran las piezas.

ISSN Electrónico: 3061-774X

Ventajas

- Costos Reducidos: La fabricación de piezas mediante impresión 3D suele ser más económica que los métodos tradicionales.
- Prototipado Rápido: Permite crear y probar prototipos rápidamente, lo que acelera el proceso de diseño y mejora.
- Personalización: Las piezas pueden diseñarse específicamente para las necesidades y especificaciones del usuario.
- Accesibilidad: La tecnología de impresión 3D es cada vez más accesible para los aficionados y pequeños fabricantes.

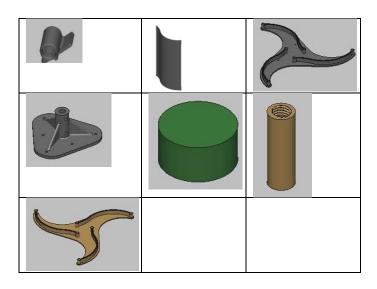


Fig. 4. Piezas ya diseñadas para impresora 3D.

Consideraciones

- Materiales: Es importante seleccionar materiales que sean suficientemente resistentes y duraderos para las condiciones a las que se someterán, como la exposición al viento, la lluvia y los rayos UV.
- Tamaño de las Piezas: La impresión 3D de piezas muy grandes puede requerir impresoras especializadas o la creación de componentes modulares que se ensamblen después de la impresión.
- Precisión y Calidad: La impresora 3D utilizada debe tener una buena precisión y las piezas impresas deben tener alta calidad para evitar fallos mecánicos.

6. CONCLUSIONES

Los aerogeneradores de pequeña escala representan una solución prometedora para la generación de energía renovable en entornos residenciales y comerciales. A pesar de sus limitaciones actuales, como la baja velocidad del viento y los altos costos iniciales, los avances tecnológicos y las soluciones innovadoras, como los controladores inteligentes y la instalación en ubicaciones estratégicas como vías de tren, están mejorando su viabilidad y eficiencia. Estudios específicos en regiones como Turquía, Omán e India demuestran el potencial significativo de estos sistemas para contribuir a la independencia energética y la sostenibilidad ambiental. La evaluación cuidadosa de las condiciones locales del viento y la adopción de tecnologías avanzadas son esenciales para maximizar el rendimiento y la rentabilidad de los aerogeneradores pequeños.

Referencias

- [1] E. Ugur, O. Elma, U. S. Selamogullari, M. Tanrioven and M. Uzunoglu, "Financial payback analysis of small wind turbines for a smart home application in Istanbul/Turkey," 2013 International Conference on Renewable Energy Research and Applications (ICRERA), Madrid, Spain, 2013, pp. 686-689, doi: 10.1109/ICRERA.2013.6749841.
- [2] R. Ahshan, A. Al-Badi, N. Hosseinzadeh and M. Shafiq, "Small Wind Turbine Systems for Application in Oman," 2018 5th International Conference on Electric Power and Energy Conversion Systems (EPECS), Kitakyushu, Japan, 2018, pp. 1-6, doi: 10.1109/EPECS.2018.8443520.
- [3] Song, Dongran, et al. "Energy capture efficiency enhancement of wind turbines via stochastic model predictive yaw control based on intelligent scenarios generation." *Applied Energy* 312 (2022): 118773.
- [4] E. Ugur, O. Elma, U. S. Selamogullari, M. Tanrioven and M. Uzunoglu, "Financial payback analysis of small wind turbines for a smart home application in Istanbul/Turkey," 2013 International Conference on Renewable Energy Research and Applications (ICRERA), Madrid, Spain, 2013, pp. 686-689, doi: 10.1109/ICRERA.2013.6749841.
- [5] R. Ahshan, A. Al-Badi, N. Hosseinzadeh and M. Shafiq, "Small Wind Turbine Systems for Application in Oman," 2018 5th International Conference on Electric Power and Energy Conversion Systems (EPECS), Kitakyushu, Japan, 2018, pp. 1-6, doi: 10.1109/EPECS.2018.8443520.
- [6] S. Botha and R. Gouws, "Intelligent controller for improved efficiency of micro wind turbine generators," 2016 International Conference on the Industrial and Commercial Use of Energy (ICUE), Cape Town, South Africa, 2016, pp. 278-285.
- [7] N. Sagar, A. Tiwari, S. Kumar, L. Kumar, M. Belwal and S. Kumar, "Identifying and using Viable Alternative Energy Resources (WIND Energy)," 2019 Women Institute of Technology Conference on Electrical and Computer Engineering (WITCON ECE), Dehradun, India, 2019, pp. 40-44, doi: 10.1109/WITCONECE48374.2019.9092940
- [8] I. Shchur, Y. Biletskyi and V. Shchur, "Energy efficient and simple control of stand-alone combine heat-power generation small wind turbine," 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), Kyiv, UKraine, 2017, pp. 483-488, doi: 10.1109/UKRCON.2017.8100535.
- [9] Castro, R., and A. Martínez. "Variabilidad espacial y temporal del campo de viento." Dinámica del ecosistema pelágico frente a Baja California 2007 (1997): 129-147.
- [10] Manzanares, Ramiro R., Javier B. Lucero, and Sergio F. Mohamed. "Fundamentos de cálculo de componentes estructurales de aerogeneradores de eje horizontal." Avances en Energías Renovables y Medio Ambiente 17 (2013).