<- Atrás

Revista ELECTRO

Vol. 46 – Año 2024

Artículo

TÍTULO

Medición de Nivel Utilizando un Sensor Inteligente e Internet de las Cosas

AUTORES

Medina-Rodríguez, V.; Rivera-Mejía, J.; Quiñonez-Moreno, R.E.

RESUMEN

En el presente trabajo se presenta el desarrollo de un sistema de medición para medir el nivel de líquidos utilizando un sensor inteligente e internet de las cosas. Para el diseño de la medición de nivel se utilizó una arquitectura de alto nivel para internet de las cosas que consta de tres capas. La medición de nivel se basa en un sensor inteligente que utiliza un sensor de presión hidrostática de bajo costo. El se nsor inte ligente cuenta con tres funciones: procesamiento, compensación y comunicación WiFi. La información del nivel se guarda en una computadora y se envía a la nube desde donde se puede consultar la información por medio de dispositivos móviles. La prueba del si stema de medición se realizó utilizando un contenedor de aproximadamente 200 l con agua. Demostrando que el sensor es lineal, tiene muy buena repetibilidad y que su medición es independiente de la forma del contenedor. .

Palabras Clave: Sensores inteligen tes, internet de las cosas, sensor de nivel, presión hidrostática.

ABSTRACT

In this work, the development of a measurement system to measure the level of liquids using a n intelligent sensor and the internet of things is presented. The level measurement design used a high-level architecture for the internet of things that consists of three layers. The level measurement is based on a n Intelligent Sensor that uses a low-cost hydrostatic pressure sensor and has three functions: processing, compensation and WiFi communication. The level information is saved on a computer and sent to the cloud from where the information can be consulted through mobile devices. Testing of the measurement system was carried out using a container of 200 l with water. Demonstrating that the sensor is linear, has very good repeatability and that its measurement is independent of the shape of the container.

Keywords: Intelligent sensor, internet of things, level sensor, hydrostatic pressure.

REFERENCIAS

[1] E.O. Doebelin, Measurement Systems Application and Design, New York, McGraw-Hill, 1990.
[2] M. F.F. Domingues, T. de B. Paixao, E. F. Teixeira Mesquita, N. Alberto, A. R. frías, R.A.S. Ferreira, H. Varum, P.F. De la Costa Antunes y P.S. de Brito André. Liquid Hydrostatic Pressure Optical Sensor Based on Micro-Cavity Produced by the Catastrophic Fuse Effect. IEEE Sensors Journal, VOL. 15, NO. 10, pp. 5654-5658 , Oct. 2015.
[3] C. A. F. Marques, G.-D. Peng, y D. J. Webb. Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings. Optics Express, Vol. (23), No. 5, pp. 6058-6072. Jan. 2015. doi.org/10.1364/OE.23.006058.
[4] H. Jia, G. Cheng, J. Li, H. Liu y J. Qian. A correction method for the ambient temperature-induced error in hydrostatic leveling systems and application. Measurement, Vol. 172, pp 1645-1660, Feb. 2021.
[5] R V Tsvetkova, V V Yepin and A P Shestakov. Numerical estimation of various influence factors on a multipoint hydrostatic leveling system. IOP Conference Series: Materials Science and Engineering. 13–16 February 2017, Perm, Russian Federation. Pp. 1-9 DOI 10.1088/1757-899X/208/1/012046
[6] A.G. Chupyra, G.A. Gusev, M.N. Kondaurov, A.S. Medvedko y R.V. Pilipenk. Binp Capacitive and Ultrasonic Hydrostatic Level Sensors. The 10th International Workshop on Accelerator Alignment, KEK, Tsukuba, 11-15 Feb. 2008. Pp. 1-6
[7] M. Dholu and K. A. Ghodinde, "Internet of Things (IoT) for Precision Agriculture Application," 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 2018, pp. 339-342, doi: 10.1109/ICOEI.2018.8553720.
[8] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami. Internet of Things (IoT): A vision, architectural e lements, and future directions. Future Generation Computer Systems. Vol. 29, No. 7, pp 1645-1660, Sep. 2013.
[9] J. Lloret, J. Tomas, A. Canovas y L. Parra. An Integrated IoT Architecture for Smart Metering. IEEE Communications Magazine, vol. 54, no. 12, pp. 50-57, December 2016, doi: 10.1109/MCOM.2016.1600647CM.
[10] T. Perumal, M. N. Sulaiman y C. Y. Leong, "Internet of Things (IoT) enabled water monitoring system," 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 2015, pp. 86-87, doi: 10.1109/GCCE.2015.7398710.
[11] J. Rivera. Instrumentación: Bases para la Automatización Total. Trillas, 2da Edición, México, 2021.
[12] Baumer. Guideline for Hydrostatic Level Measurement. Available: https://www.baumer.com/medias/__secure__/Baumer_Hydrostatic_Level_Measurement_Guideline_V1.10_EN.pdf?mediaPK=8995611443230.
[13] J. Rivera-Mejía, M. Carrillo-Romero and G. Herrera-Ruiz, “Self-Compensation to Build Reconfigurable Measurement Systems”, Revista ELECTRO, Vol. 46, 2024, pp. 189-194 https://itchihuahua.mx/revista_electro ISSN Electrónico: 3061-774X 194 Instrumentation a Measurement Magazine, Vol.16, Issue 2, pp 10-19, April 2013. DOI: 10.1109/MIM.2013.6495675
[14] Q.F. Hassan. Internet of Things A to Z, Thechnologies and Applications. IEEE pres s, Piscataway, NJ, 2018.
[15] O. V. Ozan. Developing IoT Proyects with ESP32. 2021.
[16] W.W. Hines y D.C. Montgomery. Probability And Statics In Engineering And Management Science, 3ed. Wiley and Sons, 1996.

CITAR COMO:

Medina-Rodríguez, V.; Rivera-Mejía, J.; Quiñonez-Moreno, R.E., "Medición de Nivel Utilizando un Sensor Inteligente e Internet de las Cosas", Revista ELECTRO, Vol. 46, 2024, pp. 189-194.

VERSIÓN PDF

(Abrir archivo PDF en una nueva pestaña)