<- Atrás

Revista ELECTRO

Vol. 45 – Año 2023

Artículo

TÍTULO

Modelos Matemáticos en Sistemas Acuícolas de Recirculación: Una Revisión

AUTORES

Jesús Leonel Arce Valdez, Osbaldo Aragón Banderas, Luis Néstor Coria de los Ríos, Paul Antonio Valle Trujillo, Yolocuauhtli Salazar Muñoz

RESUMEN

En este artículo, se lleva a cabo una revisión de la literatura para analizar el modelado en sistemas acuícolas de recirculación. Se identificaron 38 artículos publicados entre 2009 y 2022, que emplean diversas tecnologías, como modelado matemático, lógica difusa, procesamiento de imágenes, Internet de las cosas (IoT) y máquinas de vectores de soporte. Est as tecnologías permiten el monitoreo y control de variables clave, como oxígeno disuelto, temperatura, pH y niveles de amoníaco y nitrato. Además, se automatizan procesos como el conteo y medición de poblaciones de peces. Los modelos matemáticos son esenci ales para predecir el comportamiento de las poblaciones de peces y optimizar la producción en sistemas acuícolas. Estas tecnologías pueden mejorar la eficiencia y la toma de decisiones en la acuicultura.

Palabras Clave: Modelado acuícola, Recirculación, Tecnologías acuícolas, Automatización, Modelos matemáticos, Control de calidad del agua.

ABSTRACT

This article presents a literature review to analyze modeling in recirculating aquaculture systems. A total of 38 articles published between 2009 and 2022 we re identified, employing various technologies such as mathematical modeling, fuzzy logic, image processing, Internet of Things (IoT), and support vector machines. These technologies enable monitoring and control of key variables such as dissolved oxygen, t emperature, pH, and ammonia and nitrate levels. Additionally, processes like fish population counting and measurement are automated. Mathematical models are crucial for predicting fish population behavior and optimizing aquaculture production. These techno logies can enhance efficiency and decision-making in aquaculture.

Keywords: Aquaculture modeling, Recirculation, Aquaculture technologies, Automation, Mathematical models, Water quality control.

REFERENCIAS

[1] C. Brugère, " Global aquaculture outlook in the next decades: an analysis of national aquaculture production forecasts to 2030," 2004. [Online]. Available: https://www.fao.org/3/y5648e/y5648e.pdf.
[2] O. Board, "Sustaining marine fisheries. National Academies," 1999. [Online].
[3] T. Watanabe, "Strategies for further development of aquatic feeds. Fish. Sci.," 2002, pp. 242-252.
[4] M. Ulloa, "Evaluación de un sistema experimental de acuaponía.," in Avances en investigación agropecuaria, 2005, pp. 1-5.
[5] R. Tyson, "Reconciling Water Quality Parameters Impacting Nitrification in Aquaponics: The pH Levels.," Estado de Florida Hort. Soc ., 2004, pp. 79-83.
[6] P. Edwards, "Misunderstandings, myths and mantras in aquaculture: its contribution to world food supplies has been systematically over reported," 2019, p. 103547.
[7] B. Williams, "Analysis and management of animal populations," 2 002.
[8] J. A. Tyler, "Individual variability and spatial heterogeneity in fish population models," 1994, pp. 91-123.
[9] P. Rojas Tirado, "RAS: Profundizarán en herramientas para medir calidad de agua microbiológica," 21 09 2018. [Online]. Available: https://www.salmonexpert.cl/ras-profundizarn-en-herramientas-para-medir-calidad-de-agua-microbiolgica/1297782.
[10] J. L. Zambonino, "Revista AquaTIC," 2006. [Online]. Available: http://www.revistaaquatic.com/aquatic/art.asp?t=p&c=103..
[11] S. Chen , "Su spended solids characteristics from recirculating aquacultural systems and desing implications," 1993, pp. 143-155.
[12] M. Gutierrez-Wing, "Biological filters in aquaculture: trends and research directions for freshwater and marine applications," in Aquac ultural engineering, 2006, pp. 163-171.
[13] J. Colt, "Applications of pure oxygen in fish culture," in Aquacultural Engineering, 1988, pp. 397-441.
[14] A. Arnulfo, "Evaluación de los parámetros productivos y de calidad de agua en el cultivo de tilapia Oreochromis niloticus En sistemas de recirculación cerrada en laboratorio," 16 junio 2015. [Online]. Available: http://repositorio.unac.edu.pe/bitstream/handle/20.500.12952/1000/207.pdf?sequence=1&isAllowed=y.
[15] L. Konikow, in Groundwater Modeling, in The Handbook of Groundwater Engineering, 1999.
[16] G. Leddert, "Undergraduate research in mathematical modeling," in Journal of Mathematics and science: Collaborative Explorations, 2021, pp. 17,39-52.
[17] A. Fattah, "Impact of feeding system on the beha viour and perfomance of Nile tilapia (Oreochromis niloticus)," in Aquaculture, 2021.
[18] I. E. Behmene, "Feeding Level and Frequency Effects in Captive Nile Tilapia (Oreochromis niloticus)," in Journal of Aquaculture and Fish Health, 2021, pp. 127-136.
[19] S. Lall, "Nutrition, feeding, and behavior of fish," in Veterinary Clinics of North America: Exotic Animal Practice, 2009, pp. 361-372.
[20] Q. Ren, "A method for predicting dissolved oxygen in aquaculture water in an aquaponics system," in Journal of Aquaculture Engineering and Fisheries Research, 2018, pp. 67-75.
[21] J. Díaz, "Diseño de un módulo electrónico para la crianza automatizada de peces mediante modelamiento matemático multiparamétrico," 2018. [Online]. Available: https://doi.org/10.4067/S07 18-07642018000100103.
[22] E. C. Guevara Zambrano, "Diseño e implementación de módulo para adquisición de datos de la calidad del agua en sistemas acuícolas utilizando un multisensor orientado al IOT.," 2022. [Online]. Available: https://dspace.ups.edu.ec/ bitstream/123456789/23845/1/UPS-GT004092.pdf.
[23] L. Mesa Villegas, "Evaluación de la eficiencia de un sistema de acuaponía por biofiltración en el sistema RAS," 2021. [Online]. Available: http://repository.unilasallista.edu.co/dspace/bitstream/10567/3185 /1/20162114.pdf.
[24] A. Mahmound, "The regulatory roles of yucca extraxt on the growth rate, hepatorenal function, histopathological alterations, and immune-related genes in common carp exposed with acute ammonia stress," 2021. [Online]. Available: https: //doi.org/10.1016/j.aquaculture.2020.736287.
[25] D. E. Meyer, "Acuacultura," in Introducción a la acuacultura, Honduras, Zamorano, 2004.
[26] C. Jie, "Intelligent Control and Management System for Recirculating Aquaculture.," 2019. [Online]. Available: https://doi.org/10.1109/ICECE48499.2019.9058567.
[27] V. Lugert, "A review on fish growth calculation: multiple fuctions in fish production and their specific application.," 2016. [Online]. Available: https://doi.org/10.1111/raq.12071.
[28] S. Abdallah , "An Automatic Feeder with Two Different Control Systems for Intensive Mirror Carp Production.," pp. 2,18-32, 2014.
[29] C. Bobak, "An inverse problem for a mathematical model of aquaponic agriculture.," 2017. [Online]. Available: https: //doi.org/10.1063/1.4975642.
[30] N. Dampin, "Fish growth model for Nile Tilapia (Oreochromis niloticus) in wastewater oxidation pond," 2012. [Online]. Available: https://doi.org/10.1016/j.proenv.2012.01.042.
[31] J. García-Sabater, "Introducción al Modela do Matemático.," 2021. [Online]. Available: http://hdl.handle.net/10251/158555.
[32] A. Vidal Meló, "El estudio de aplicaciones de los sistemas de ecuaciones diferenciales ordinarias a través de artículos científicos .," noviembre 2019. [Online]. Available: file:///C:/Users/Cool/Downloads/El_estudio_de_aplicaciones_de_los_sistemas_de_ecua.pdf.
[33] M. Amiya Ranjan, "A new growth curve model for biological growth," 2014. [Online]. Available: https://doi.org/10.1080/15598608.2013.852030.
[34] F. J. Vilela Lópe z, "Diseño de un modelo de estimación del oxígeno disuelto en el estanque de crianza de tilapias de la PUCP usando lógica difusa.," 2009. [Online]. Available: http://hdl.handle.net/20.500.12404/250.
[35] B. Mejia, "An Automatic System Oriented to Counting and Measuring the Geometric Dimensions of Gray Tilapia Fingerlings Based on Digital Image Processing.," 2018. [Online]. Available: https://doi.org/10.1109/INTERCON.2018.8526426.
[36] L. Avendaño, "Sistemas IoT para supervisar la calidad en caudales superficiales, a partir de la normatividad ambiental," 2019. [Online]. Available: http://repositorio.uptc.edu.co/handle/001/3448.
[37] J. C. Oviedo-Lopera, "Diseño de un sistema acuapón ico monitoreado mediante internet de las cosas e inteligencia artificial.," 10 12 2020. [Online]. Available: https://www.revistaespacios.com/a20v41n47/a20v41n47p05.pdf.
[38] N. B. Tarigan, "Explorative Study of Aquaponics Systems in Indonesia.," 2021. [Onl ine]. Available: https://doi.org/10.3390/su132212685.
[39] A. A. Ewees, "Optimized support vector machines for unveiling mortaly incidence in Tilapia fish.," 2021. [Online]. Available: https://doi.org/10.1016/j.asej.2021.01.014.
[40] S. R. Correa Ruiz, "Im plementación de un sistema de monitoreo remoto de indicadores de desempeño de conexiones de datos en redes WLAN mediante una sonda implementada con tecnologías de IOT," 2022. [Online]. Available: https://repository.ucatolica.edu.co/server/api/core/bitstrea ms/106be73c-6f81-4e2f-9caa-af2ad9eb68f3/content.
[41] J. J. Martínez Nolasco, "Sistema de monitoreo , adquisición de datos y control de un densímetro de tubo vibrante.," noviembre 2014. [Online]. Available: https://pistaseducativas.celaya.tecnm.mx/index.php /pistas/article/download/1442/1178.
[42] A. Meléndez, "Automatización de sistema de recirculación de agua caliente utilizando hardware libre en el hospital IESS Latacunga," diciembre 2015. [Online]. Available: https://repositorio.uta.edu.ec/jspui/handle/123456789/19373.
[43] R. Valenzuela Vargas, "Evaluación preliminar de un sistema de recirculación de aguas para un prototipo implementado en la producción de tilapia roja," 10 septiembre 2018. [Online]. Available : https://repositoriousco.co/bitstream/123456789/3079/1/TH%20IA%200253.pdf
[44] A. Díaz Acero, "Diseño del sistema de control electrónico para la adquisición de datos de un cultivo vertical de Pleurotus Ostreatus," 2020. [Online]. Available: REVISTA ELECTRO, Vol. 45 pp. 6 1-68, Oct 2023, Chihuahua, Chih. México https://itchihuahua.mx/revista_electro ISSN 1405-2172 68 https://revista s.sena.edu.co/index.php/sennova/article/download/4265/4452/20283
[45] J. E. Valencia Castillo, "Diseño e implementación de un sistema para el control y monitoreo de un cultivo acuapónico a pequeña escala basado en IOT," 2021. [Online]. Available: https://r epositorio.utp.edu.co/server/api/core/bitstreams/9748b7d0-f3bc-477a-8551-1c3f5565ced1/content.
[46] W. Chen, "Coupled dynamics of energy budget and population growth of tilapia in response to pulsed waterborne copper.," 2012. [Online]. Available: https://d oi.org/10.1007/s10646-012-0983-3.
[47] J. A. Sousa Júnior, "Mathematical modeling applied to the growth of tilapia in net cages in the sub middle of the Sao Francisco River .," 2014. [Online]. Available: https://doi.org/10.1590/S0100-69162014000500019.
[48] A. Lima, "Use of mathematical models in the study of bodily growth in GIFT strain Nile tilapia," 2014. [Online]. Available: https://doi.org/10.1590/S1806-66902014000200005.
[49] B. Mejia, 2018. [Online]. Available: https://doi.org/10.1109/INTERCON.2018.85 26426.
[50] R. Mahkeswaran, "Smart and Sustainable Home Aquaponics System with Feature-Rich Internet of Things Mobile Application. In internet of Things and Big Data Analytics Toward Next-Generation Intelligence," 2020, pp. 369-383.
[51] S. Zhang, "Automat ic fish population counting by machine vision and a hybrid deep neural network model.," 2020. [Online]. Available: https://doi.org/10.3390/ani10020364.
[52] J. García-Sabater, "Introducción al Modelado Matemático.," 2021. [Online]. Available: http://hdl.handle.net/10251/158555.
[53] E. Rodríguez Talavera, "Differential equations system to describe bacterial growth, pH variation and lactic acid production in batch fermentation.," 2021. [Online]. Available: http://revistaaristas.tij.uabc.mx/index .php/revista_aristas/article/view/101.
[54] B. García, "Primary model for biomass growth prediction in batch fermentation.," 2021. [Online]. Available: https://doi.org/10.3390/sym13081468.
[55] P. Valle Trujillo, Análisis de sistemas biológicos., Madrid, E spaña: Universitaria Ramón Areces, 2012.
[56] J. G. Villavicencio Pulido , "Dos Modelos para el Estudio de la Dinámica Poblacional de Peces Tilapia en Condiciones de Cultivo.," 2017. [Online]. Available: http://repositorio.utm.mx/handle/123456789/169.
[57] G. Orlandoni-Merli, "Ecuaciones diferenciales de la física clásica. Interpretación y solución mediante dinámica de sistemas.," 2018. [Online]. Available: https://www.redalyc.org/journal/5537/553756967006/html/.
[58] C. Bobak, "An inverse problem for a ma thematical model of aquaponic agriculture.," 2017. [Online]. Available: https://doi.org/10.1063/1.4975642.
[59] C. Jie, 2019. [Online]. Available: https://doi.org/10.1109/ICECE48499.2019.9058567.
[60] A. Umar, "Modelling the growth of Nile Tilapia (Oreochro mis niloticus) on fed diets formulated from local ingredients in cages.," Septiembre 2020. [Online]. Available: https://www.researchgate.net/publication/344238862_Modelling_the_Growth_of_Nile_Tilapia_Oreochromis_niloticus_on_Fed_Diets_Formulated_from_Local_Ingredients_in_Cages.
[61] G. Leddert, ""Undergraduate research in mathematical modeling"," in Journal of Mathematics and science: Collaborative Explorations, 2021, pp. 17, 39-52.
[62] I. Panayotova, "Modeling the ecological dynamics of a three-species fi sh population in the Chesapeake Bay," 2021. [Online]. Available: https://scholarship.claremont.edu/codee/vol14/iss1/2.
[63] A. A. Ewees, "Optimized support vector machines for unveiling mortaly incidence in Tilapia fish.," 2021. [Online]. Available: https://doi.org/10.1016/j.asej.2021.01.0

CITAR COMO:

Jesús Leonel Arce Valdez, Osbaldo Aragón Banderas, Luis Néstor Coria de los Ríos, Paul Antonio Valle Trujillo, Yolocuauhtli Salazar Muñoz, "Modelos Matemáticos en Sistemas Acuícolas de Recirculación: Una Revisión", Revista ELECTRO, Vol. 45, 2023, pp.61-68.

VERSIÓN PDF

(Abrir archivo PDF en una nueva pestaña)