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ABSTRACT 
 

This article presents the development of an embedded vision 

system with multiple cameras for monitoring access areas to a 

building and to carry on personnel identification via facial 

recognition. A Deep Neural Network (DNN) was trained on the 

VGGFace2 dataset using two different architectures, DFN-L and 

ResNet-50, as well as two different classification layers, fully 

connected and ArcFace. The behavior during training and 

discriminative performance of each combination of architecture 

and classification layer is compared to determine which is more 

appropriate for a continuously re-trainable network, observing 

that a ResNet-50 with regular fully connected classification layer 

fits the criteria better. This network was retrained on a dataset to 

identify a people which data was acquired locally, reaching 

98.83% verification accuracy. This DNN was deployed on an 

Nvidia Jetson TX2 embedded system connected to a surveillance 

camera system to identify persons in the database. 

 

Keywords: Face Recognition, Face Detection, Neural Networks, 

Biometric Systems, Deep Learning. 

 

1. INTRODUCTION 
In our current age, biometric systems, which use biological 

measurements to identify people based on their physical or 

behavioral characteristics have turned into the most reliable 

alternative to classical authentication methods, like the 

possession of an object such as a key or identification card, or 

knowledge of a password. A major advantage is that unlike 

traditional methods, biometric information cannot be lost [1]. 

Among biometric recognition techniques, facial recognition is 

highlighted for the ease of facial data acquisition, requiring low 

or even null effort from the subjects, and sufficing with the use 

of a common use camera, whereas the acquisition of other 

biometric information relies on specialized sensors [2]. 

 

Although progress has been made in facial recognition for 

several decades, the implementation of Deep Learning 

techniques, which are a branch of Machine Learning, has 

brought unprecedented success upon the field. These 

techniques involve the design of a deep neural network which 

is requires enormous amounts of training data, from which the 

network learns patterns to detect. As a result, it is possible to 

obtain systems capable of rivaling and even surpassing human 

capacities. Given enough computational resources, facial 

recognition systems can be implemented on plenty of 

computational systems. However, it can be preferred to run 

them on an embedded system. An embedded system contains 

one or several processors, and have specialized architecture fit 

to a specific task. Due to the custom fit nature of an embedded 

system, it generally performs faster and more efficiently than a 

common use computational system [3]. 

 

Highly developed as it may be, facial recognition is often 

marred by low quality images, such as those obtained with low 

resolution sensors or in badly illuminated scenes, as well as 

non-frontal images. Indeed, deviating from the narrow set of 

ideal quality images greatly degrades the performance of facial 

recognition systems, to the point where they can perform badly 

on images obtained “in the wild”. Similarly, identifying faces 

with occlusions is a challenging problem. 

 

In this article we present the development of an embedded 

vision system capable of performing face detection on image 

sequences obtained from a surveillance camera system as well 

as performing recognition of the detected faces, identifying the 

people registered on the training dataset. This system is capable 

of keeping a registry detailing the time and date of arrival of 

detected people in the monitored area. Figure 1 shows the 

process followed by the system.  

 

 
Figure 1. Overall embedded vision system process. 

 

In the first stage the embedded vision system monitors a given 

area while connected to a surveillance camera system from 

which it acquires image sequences. In the second stage face 

detection is performed over these image sequences. During the 
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third stage recognition is carried out over detected faces to 

determine their corresponding identities based on a given 

dataset. Finally, during the last stage the found identities are 

registered. 

 

2. IMAGE ACQUISITION 
The embedded computing board is connected to a surveillance 

camera system. The cameras are Hikvision HiLook IPC-B620-

Z, which feature high quality lenses with a wide field of view. 

Cameras are connected to a Local Area Network (LAN) via 

Ethernet cable, which also powers them via PoE (Power over 

Ethernet). The parameters of the cameras are show in Table 1. 

 

Table 1. Hikvision HiLook IPC-B620-Z camera parameters. 

Feature Value 

Interface Ethernet 

Power PoE 

Max. Resolution 1920x1080 

Max. FPS 30 

Scan type 1/2.8” progressive 

Night Vision Range 30m 

f-number F1.4 

 

To acquire image sequences from the cameras, a Real Time 

Streaming Protocol algorithm was implemented, making use of 

various functions from the OpenCV library. To access the 

cameras video stream, it is only necessary to specify their IP 

address in the algorithm running in the embedded computing 

board, where the face detection and recognition in performed. 

 

3. FACE DETECTION 
In computer vision, face detection can be accomplished through 

different means, but nonetheless, deep neural network (DNN) 

models often perform the best. In the developed embedded 

vision system face detection is performed in such a way, using 

a pre-trained DNN rather than training one from scratch.  

 

When a pre-trained DNN is used in inference mode, that is, for 

doing the task it was trained to, it has to be fed with certain 

input data, which is processed through the network layers until 

it produces an output. In the context of face detection, the use 

of a DNN for such a purpose roughly follows the following 

steps: 

1. The face detection DNN is fed an input image. 

2. Different regions of the image are analyzed, where the 

DNN decides whether a face exists or not. 

3. As a result, the DNN returns bounding boxes enclosing 

the detected faces, if any were found. 

 

An important parameter is the scale of images, since a face of a 

very small size can get distorted and therefore be missed by the 

detector. This commonly happens when the faces in a scene are 

very far from the camera, appearing only as a very small set of 

pixels in the captured image.  

In the realm of image recognition and detection, a particular 

type of neural network, the Convolutional Neural Network 

(CNN) reigns supreme, as the most widely used, and in most 

cases, also best performing of them. A CNN employs filters in 

its convolutional layers to generate activation maps, which 

similarly to the human eye react to visual stimulus. In a CNN 

the convolutional layers sample around local receptive fields to 

generate such a stimulus. 

 

The DNN pre-trained model selected to perform face detection 

is the Multitask Cascaded Convolutional Neural Network 

(MTCNN) [4], which works by joining three different networks 

in sequence to perform the following tasks: 

1. Obtaining candidate windows through the analysis of a 

simple CNN [5]. 

2. Refining of candidate windows, by eliminating face-free 

windows with a more complex CNN. 

3. Further refining of the windows by eliminating more face-

free windows with an even more complex CNN. 

 

MTCNN reaches real time performance when used in 640x480 

images, and features several parameters that can be tuned to 

filter out faces of small resolutions and to define confidence 

thresholds, among other things. It is capable of detecting faces 

as small as 20x20 pixels. 

 

4. FACE RECOGNITION 
Similarly, to face detection, face recognition can be performed 

through many different techniques, but most of them pale to in 

comparison to DNNs. Differently from face detection, face 

recognition is performed in this embedded vision system not by 

using a pre-trained DNN, but by one trained from zero. 

 
4.1. Network Architecture and Loss Functions 
Although many of the state of the art DNNs have focused on 

architectures with a large amount of parameters, sometimes 

reaching the billions, the designed embedded vision system is 

oriented towards real time performance, or at least a 

performance close to it. Since a big architecture implies a 

higher amount of calculations for the network to produce an 

output, the largest of DNNs are of little interest when 

implemented on embedded devices of limited resources. In 

general, the leaner the architecture the faster it will compute. 

With such a premise in mind, particular attention was given to 

lightweight DNN architectures found in literature. 

 

Another specific concern was the performance in non-frontal 

face positions, since the further a face deviates from frontal 

view, the worse the networks predicts its identity. Given that in 

the developed system the image sequences are acquired through 

a surveillance camera system in a mostly uncontrolled scenario, 

the angle of the faces with respect with the camera is expected 
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to vary wildly. Therefore, proposals for tackling positional 

variance were thoroughly studied. 

An interesting network architecture is the Deformable Face 

Network (DFN), which has the peculiarity of featuring a 

“deformable module” consisting of a deformable convolutional 

layer [6]. In contrast to regular convolutional layers, a 

deformable convolutional layer is capable of adapting its 

receptive field during training to better model certain geometric 

transformations. The rationale behind this design choice is that 

faces follow semi-rigid deformations, such as the change of 

position. A regular convolutional layer would model 

transformations only following a rigid square pattern. 

 

DFN demands to be trained by inputting data in pairs of images 

of the same class. It also makes use of three novel loss 

functions: displacement consistency loss (DCL), identity 

consistency loss (ICL) and pose triplet loss (PTL), which are 

used as regularization terms to the Softmax loss, which 

computes the output of the network, and is a common feature in 

many different DNNs. DCL attempts to learn the displacement 

fields, to produce a consistent output, while ICL constraints the 

geometric distance between the output features produced by 

each pair of input images to ensure similar identities produce 

similar outputs. PTL was not considered for further 

examination. 

 

Although the Softmax loss is popular, further advances have 

been made through margin loss. Margin loss rely on the 

geometric representation of each training class on the network. 

As they are dispersed across the representational hyperspace, a 

margin is imposed between each pair of classes, squishing the 

classes into narrower regions and further separating them from 

each other. This serves to define a clearer decision boundary, 

which separates each class. This is more clearly seen in the 

Additive Margin Softmax loss[7] as shown in Fig. 2. 

 
Figure 2. Softmax loss and Additive Margin Softmax loss. 

 

Particular interest was given to the ArcFace loss, a margin loss 

which makes use of two parameters to scale the 

representational hyper-space and to impose a margin in the 

angle measured between each class center in the hyper-space 

[8]. These parameters, known as s and m, scale the total radius 

of the hypersphere enclosing the representations and the 

angular margin between each class center, respectively. DNN 

training is highly influenced by these values. Unfortunately, 

there is not much of a theoretical background for the 

determination of appropriate parameter values, and some of the 

better performing values have been found in a purely empirical 

way. Generally, they are set to m=0.5 and s=64. An alternative 

to calculate s give in [9] is based on the number of classes to 

distinguish from: 

𝑠 =  √2 ∗ ln(𝐶 − 1)                                              

(1) 

 

4.2. DNN Training 
For comparing the effectiveness of the architectures and loss 

functions of interest, some DNNs were trained, featuring a few 

differences between each other. DFN was implemented on its 

lighter variant DFN-L, and compared against a ResNet-50 [10]. 

In the designed embedded vision system, face recognition relies 

on the identities the DNN has been trained on, and it will rely 

on re-training the DNN to add a new identity. Therefore, 

particular concern was given to the training time of the 

network. 

 

All of the DNNs were trained on the VGGFace2 dataset, which 

was created with the explicit purpose of collecting high quality 

labeled images of faces in a wide variety of poses and of 

featuring a diverse spread of ages and ethnical identities [11]. 

VGGFace2 is composed of 3.31 million images belonging to 

9131 identities, with an average of 362.6 images per identity.  

Alignment was performed on each image of VGGFace2, and 

each of the images was cropped to a resolution of 122x122. 

  

Since deep learning framework of choice is TensorFlow with 

Keras used in tandem, the TensorFlow exclusive format 

TFRecord was used for speeding up the training time by 

applying it to the training datasets. A TFRecord essentially 

converts each image in a dataset to a binary format which can 

be mapped back to image format through a previously defined 

parsing function. Each of these binary sets of data is gathered 

into a single file, which can then be split to convenience. The 

advantage of using TFRecords is that if we use the images 

separately, each of them would need to be opened separately, 

but since a TFRecord shard contains information of many 

images, we can greatly reduce the performance impact of 

opening them [12]. 

 

To monitor how much the capabilities of a network improve 

while being trained, it is common to evaluate their performance 

each time an epoch passes. An epoch is completed each time 

the networks has run through the entirety of the training dataset 

one time. The evaluation is usually performed by using a 

validation dataset, which is a small split from the original 

training dataset, and is kept for this purpose only. In other 

words, the DNN is not trained on the validation dataset and is 

used only for performance evaluation. 
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For the DFN-L training, the weights given to the ICL and DCL 

regularization losses were 0.001 and 0.01, respectively. The 

momentum and learning rate were continuously modified 

through a One-Cycle Policy (OCP) training criteria of 20 

epochs following the criteria used in [13]. As shown in Figure 

3, DCL behaved in a marked parabolic way, increasing during 

the first half of the training, until finally starting to get low later 

on. After these 20 epochs, the DFN-L trained on VGGFace2 

reaches a validation accuracy of around 82% as show in Figure 

4. Then, we performed training for 4 more epochs with a 

regular training regime using a Nesterov moment of 0.9 and a 

reduced learning rate of 0.001, the model finally converges 

with a validation accuracy of 87%, higher than those achieved 

with other unconstrained data datasets in previous research. 

 

 
Figure 3. DCL loss during DFN-L training (blue) and 

validation (orange).  

 

 
Figure 4. Training (blue) and validation (orange) accuracy 

during 20 epochs of DFN-L training. 

 

It became evident at this point that although the achieved 

accuracy on DFN-L was unprecedented, it still ended up short 

for a biometric system. Although it showed promise, in its 

current form it’s too dependent on being trained with highly 

constrained data, which is out of scope for the developed 

embedded vision system. Focus was then shifted towards the 

ResNet-50 architecture, and the impact of using an ArcFace 

loss function. ArcFace constraints the representational 

hyperspace through its parameters s and m, and is implemented 

as a classification layer used as an alternative to fully connected 

layers. Since it only affects the last layers of the architecture, 

experiments were made by performing transfer learning of a 

ResNet-50 previously trained on VGGFace2. This process 

involves stripping the last network layer, the fully connected 

classification layer, and replacing it with a new classification 

layer. Afterwards, the rest of the model is frozen so that the 

weights of layers other than the classification layer are not 

further modified. Training is then resumed. 

Since the formula in Eq. 1, for setting the Arcface 

hyperparameter s, depends on the number of classes, 

experiments were conducted to observe how much the 

networks training is affected varying the number of classes. 

They consisted in training the networks using two different 

subsets of VGGFace2: one with 500 identities, and other with 

20 identities. In regards to the second one, 4 more identities 

were added, corresponding to subjects whose data was 

collected locally following an uncontrolled methodology to 

better approach the distribution within VGGFace2. A data 

augmentation process was applied to the images to obtain a 

total number of images for each identity similar to the average 

of 362.6 per identity on VGGFace2. The different networks 

trained using the ResNet-50 transfer learning approach and 

their obtained results are displayed in Table 2. All of them 

followed a regular training regime, using Stochastic Gradient 

Descent with a learning rate of 0.1 and momentum of 0.9.  

 

Table 2. ResNet-50 DNNs trained through transfer learning. 

DNN Classification 

Layer 

Number of 

Classes 

Epochs Validation 

Acc. (%) 

1 ArcFace 24 6 98+ 

2 Fully connected 24 25 98+ 

3* ArcFace 500 35 55 

4 Fully connected 500 9 99+ 

 

*DNN #3 was not trained up to convergence, since by the time 

it reached 35 epochs only obtained a validation accuracy of 

55%. This is enough to show that for a high number of classes, 

ArcFace trains to slowly in comparison to traditional fully 

connected classification layers.  

 

The slow training speed of ArcFace with a high number of 

classes is a significant handicap for a network that need to be 

constantly re-trained, as stipulated on the designed embedded 

vision system. In addition, no direct benefits over a regular 

fully connected classification layer were observed.  Due to 

these reasons, ArcFace was considered a downgrade to a fully 

connected layer, and will not be used. 

 

5. PROGRAM PIPELINE 
The developed program consists of a) acquire images from 

surveillance cameras, b) detecting faces on them, c) 

recognizing the detected faces, and e) registering date and time 

of first detection. More specifically, after detecting one or more 

faces through MTCNN, we obtain a region of interest for each 

of them in the form of bounding box coordinates. Using those 

coordinates, the program crops that specific region from the 

input image and passes it to the ResNet-50 trained for face 
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recognition. This network will then assign the face to a class, 

which correspond to an identity, by outputting a probability of 

it belonging to each class. The sum of these probabilities is 

always 100%. If the probability for one class is above a preset 

confidence threshold, the recognition is taken as valid, 

representing a potential sighting. Next, a routine similar to the 

debouncing of a button is performed, which requires that we 

reach a similar result in the pipeline recognizing the same face 

for a given number of frames, which were set to a default of 8. 

During this trial period, an adjustable number of failed 

recognitions is allowed, set to a default of 3. A detailed flow 

diagram of the system is shown in Figure 5. Since most DNNs 

don’t have a perfect 100% accuracy, just like the ones used, 

performing this filtering allows the avoidance of the small 

incidence statistical inaccuracy. 

 

 
Figure 5. Full program flowchart. 

 
6. DEPLOYMENT TO EMBEDDED SYSTEM 
The face recognition system was deployed to an embedded 

system. Among the many embedded systems available on the 

market, just a few of them are oriented towards the deployment 

of software for computation intensive tasks such as deep neural 

networks for computer vision applications. The Nvidia Jetson 

embedded computing board series, which integrates a CPU, 

GPU and other circuits in a single system, was created by 

Nvidia for this explicit purpose. The developed program was 

deployed to an Nvidia Jetson TX2 embedded device [14], 

whose specs are displayed in Table 3.  

 

Table 3. Nvidia Jetson TX2 specifications [14]. 
Feature Jetson TX2 

CPU  4-core ARM Cortex A57 @ 2 GHz, 2-core Denver2 @ 

2 GHz 

GPU 256-core Maxwell @ 1.3 GHz 

Memory 8 GB 128-bit LPDDR4, 58.3 GB/s 

Disk Storage 32 GB eMMC 5.1 

Tensor Number -- 

Video Codification (1x) 4Kp60, (3x) 4K360, (4x) 1080p30, (8x) 1080p30 

Video Decodification (2x) 4Kp60, (4x) 4Kp30, (7x) 1080p60 

USB Ports (1x) USB 3.0 + (1x) USB 2.0 

For further streamlining, the DNN used for face recognition 

was converted from a TensorFlow model to a TensorRT model. 

The latter is an SDK oriented to DNNs used in inference mode, 

making extensive use of the CUDA library to create high 

performance GPU-accelerated applications. Also, in 

comparison to TensorFlow, TensorRT has a smaller memory 

consumption, which aids in maintaining a lean resource 

footprint. 

 

With the face recognition software deployed in its entirety to 

the embedded device, it was connected to the surveillance 

camera system described in section 2 through Ethernet 

connection. Although, to register sighted people, no peripherals 

aside from the cameras are needed, it is necessary to interface 

with the embedded system in order to run the program. This is 

achieved via a monitor, keyboard, and mouse connected 

through physical ports in the Nvidia Jetson TX2 embedded 

board. 

 

7. EXPERIMENTS AND RESULTS 
Two programs were written: one which performs the passive 

registering of the recognized identities in the image sequences, 

and one intended for demonstrating the internal process of the 

face recognition software. In the later, instead keeping a 

registry, it displays on screen the detected faces and their 

corresponding predicted identity on top of the original input 

image. The two programs will henceforth be referred to as the 

registration program and the demonstration program, 

respectively. 

 

The face recognition system based on ResNet50 architecture 

provides an accuracy of 98.83% on the validation data set, 

according to the experiments shown in Table 2. When testing 

with data acquired in real time, the system correctly recognized 

the identities of the persons in the database, having only one 

false positive when the face detected was in an almost lateral 

view. Figure 6 shows a person recognized from the two camera 

images at different times and Figure 7 show the recognition of 

two persons from two camera images, both using the 

demonstration program. Figure 8 shows some records in a CSV 

file made by the registration program. 

 

 
Figure 6. Face recognition from two cameras. 
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Figure 7. Recognition of two subjects from two cameras. 

 

 
Figure 8. CSV file with sighting records. 

 

While using just one camera, running either the demonstration 

program or the registration program, the system achieves a 

speed performance of around 5 FPS while using up 2 GB of 

memory in addition to the passive memory use of the 

embedded board, out of the 8 GB available. This accounts for 

around 60% of the total memory. Using two cameras drops this 

speed performance to around 4 FPS, with an only marginally 

higher memory consumption. 

 

8. CONCLUSIONS 
A prototype of an embedded vision system was developed, 

capable of detecting faces in image sequences obtained from 

surveillance cameras, and of recognizing the identity of people 

registered in a dataset. The system keeps a registry of the 

people accessing a monitored area. The software developed 

consisted of a face detection module based on MTCNN and a 

face recognition module implementing a DNN, different 

architectures and loss functions such as the DFN-L network and 

ArcFace loss functions were compared through training 

experiments showing long training periods. They were 

discarded in favor of the ResNet-50 architecture, which proved 

significantly faster to re-train. ResNet-50 was pre-trained on the 

VGGFace2 dataset and later on trained through transfer 

learning on a dataset created with some identities from 

VGGFace2 and added new identities collecting data locally. 

According to the experiments carried out, the face recognition 

system based on ResNet50 architecture provided an accuracy of 

98.83% on the validation data set. 

 

A filtering algorithm was written to discard false positives 

obtained through the face recognition software across multiple 

frames, ensuring a proper registering of the identities 

recognized. While deployed on an Nvidia Jetson TX2 

embedded board, the system used up only around 60% of its 

resources and kept a near real-time performance while using 

two cameras, allowing more cameras to be connected. 
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