
REVISTA ELECTRO, Vol. 44 pp. 200-205, Oct 2022, Chihuahua, Chih. México

http:// electro.itchihuahua.edu.mx/revista

ISSN 1405-2172

200

EMBEDDED VISION SYSTEM WITH MULTIPLE CAMERAS FOR FACE
RECOGNITION

Andrés Enrique Loya Domínguez, Isidro Robledo Vega*, Pedro Rafael Márquez Gutiérrez, Carmen Leticia

García Mata, Alberto Pacheco González

Tecnológico Nacional de México / Instituto Tecnológico de Chihuahua

División de Estudios de Posgrado e Investigación

Tecnológico Ave. #2909, 10 de mayo, Chihuahua, México

Tel. +52(614)201-2014

andyeloyd@gmail.com, [isidro.rv, pedro.mg, carmen.gm, alberto.pg]@chihuahua.tecnm.mx

* Corresponding Author

ABSTRACT

This article presents the development of an embedded vision

system with multiple cameras for monitoring access areas to a

building and to carry on personnel identification via facial

recognition. A Deep Neural Network (DNN) was trained on the

VGGFace2 dataset using two different architectures, DFN-L and

ResNet-50, as well as two different classification layers, fully

connected and ArcFace. The behavior during training and

discriminative performance of each combination of architecture

and classification layer is compared to determine which is more

appropriate for a continuously re-trainable network, observing

that a ResNet-50 with regular fully connected classification layer

fits the criteria better. This network was retrained on a dataset to

identify a people which data was acquired locally, reaching

98.83% verification accuracy. This DNN was deployed on an

Nvidia Jetson TX2 embedded system connected to a surveillance

camera system to identify persons in the database.

Keywords: Face Recognition, Face Detection, Neural Networks,

Biometric Systems, Deep Learning.

1. INTRODUCTION
In our current age, biometric systems, which use biological

measurements to identify people based on their physical or

behavioral characteristics have turned into the most reliable

alternative to classical authentication methods, like the

possession of an object such as a key or identification card, or

knowledge of a password. A major advantage is that unlike

traditional methods, biometric information cannot be lost [1].

Among biometric recognition techniques, facial recognition is

highlighted for the ease of facial data acquisition, requiring low

or even null effort from the subjects, and sufficing with the use

of a common use camera, whereas the acquisition of other

biometric information relies on specialized sensors [2].

Although progress has been made in facial recognition for

several decades, the implementation of Deep Learning

techniques, which are a branch of Machine Learning, has

brought unprecedented success upon the field. These

techniques involve the design of a deep neural network which

is requires enormous amounts of training data, from which the

network learns patterns to detect. As a result, it is possible to

obtain systems capable of rivaling and even surpassing human

capacities. Given enough computational resources, facial

recognition systems can be implemented on plenty of

computational systems. However, it can be preferred to run

them on an embedded system. An embedded system contains

one or several processors, and have specialized architecture fit

to a specific task. Due to the custom fit nature of an embedded

system, it generally performs faster and more efficiently than a

common use computational system [3].

Highly developed as it may be, facial recognition is often

marred by low quality images, such as those obtained with low

resolution sensors or in badly illuminated scenes, as well as

non-frontal images. Indeed, deviating from the narrow set of

ideal quality images greatly degrades the performance of facial

recognition systems, to the point where they can perform badly

on images obtained “in the wild”. Similarly, identifying faces

with occlusions is a challenging problem.

In this article we present the development of an embedded

vision system capable of performing face detection on image

sequences obtained from a surveillance camera system as well

as performing recognition of the detected faces, identifying the

people registered on the training dataset. This system is capable

of keeping a registry detailing the time and date of arrival of

detected people in the monitored area. Figure 1 shows the

process followed by the system.

Figure 1. Overall embedded vision system process.

In the first stage the embedded vision system monitors a given

area while connected to a surveillance camera system from

which it acquires image sequences. In the second stage face

detection is performed over these image sequences. During the

REVISTA ELECTRO, Vol. 44 pp. 200-205, Oct 2022, Chihuahua, Chih. México

http:// electro.itchihuahua.edu.mx/revista

ISSN 1405-2172

201

third stage recognition is carried out over detected faces to

determine their corresponding identities based on a given

dataset. Finally, during the last stage the found identities are

registered.

2. IMAGE ACQUISITION
The embedded computing board is connected to a surveillance

camera system. The cameras are Hikvision HiLook IPC-B620-

Z, which feature high quality lenses with a wide field of view.

Cameras are connected to a Local Area Network (LAN) via

Ethernet cable, which also powers them via PoE (Power over

Ethernet). The parameters of the cameras are show in Table 1.

Table 1. Hikvision HiLook IPC-B620-Z camera parameters.

Feature Value

Interface Ethernet

Power PoE

Max. Resolution 1920x1080

Max. FPS 30

Scan type 1/2.8” progressive

Night Vision Range 30m

f-number F1.4

To acquire image sequences from the cameras, a Real Time

Streaming Protocol algorithm was implemented, making use of

various functions from the OpenCV library. To access the

cameras video stream, it is only necessary to specify their IP

address in the algorithm running in the embedded computing

board, where the face detection and recognition in performed.

3. FACE DETECTION
In computer vision, face detection can be accomplished through

different means, but nonetheless, deep neural network (DNN)

models often perform the best. In the developed embedded

vision system face detection is performed in such a way, using

a pre-trained DNN rather than training one from scratch.

When a pre-trained DNN is used in inference mode, that is, for

doing the task it was trained to, it has to be fed with certain

input data, which is processed through the network layers until

it produces an output. In the context of face detection, the use

of a DNN for such a purpose roughly follows the following

steps:

1. The face detection DNN is fed an input image.

2. Different regions of the image are analyzed, where the

DNN decides whether a face exists or not.

3. As a result, the DNN returns bounding boxes enclosing

the detected faces, if any were found.

An important parameter is the scale of images, since a face of a

very small size can get distorted and therefore be missed by the

detector. This commonly happens when the faces in a scene are

very far from the camera, appearing only as a very small set of

pixels in the captured image.

In the realm of image recognition and detection, a particular

type of neural network, the Convolutional Neural Network

(CNN) reigns supreme, as the most widely used, and in most

cases, also best performing of them. A CNN employs filters in

its convolutional layers to generate activation maps, which

similarly to the human eye react to visual stimulus. In a CNN

the convolutional layers sample around local receptive fields to

generate such a stimulus.

The DNN pre-trained model selected to perform face detection

is the Multitask Cascaded Convolutional Neural Network

(MTCNN) [4], which works by joining three different networks

in sequence to perform the following tasks:

1. Obtaining candidate windows through the analysis of a

simple CNN [5].

2. Refining of candidate windows, by eliminating face-free

windows with a more complex CNN.

3. Further refining of the windows by eliminating more face-

free windows with an even more complex CNN.

MTCNN reaches real time performance when used in 640x480

images, and features several parameters that can be tuned to

filter out faces of small resolutions and to define confidence

thresholds, among other things. It is capable of detecting faces

as small as 20x20 pixels.

4. FACE RECOGNITION
Similarly, to face detection, face recognition can be performed

through many different techniques, but most of them pale to in

comparison to DNNs. Differently from face detection, face

recognition is performed in this embedded vision system not by

using a pre-trained DNN, but by one trained from zero.

4.1. Network Architecture and Loss Functions
Although many of the state of the art DNNs have focused on

architectures with a large amount of parameters, sometimes

reaching the billions, the designed embedded vision system is

oriented towards real time performance, or at least a

performance close to it. Since a big architecture implies a

higher amount of calculations for the network to produce an

output, the largest of DNNs are of little interest when

implemented on embedded devices of limited resources. In

general, the leaner the architecture the faster it will compute.

With such a premise in mind, particular attention was given to

lightweight DNN architectures found in literature.

Another specific concern was the performance in non-frontal

face positions, since the further a face deviates from frontal

view, the worse the networks predicts its identity. Given that in

the developed system the image sequences are acquired through

a surveillance camera system in a mostly uncontrolled scenario,

the angle of the faces with respect with the camera is expected

REVISTA ELECTRO, Vol. 44 pp. 200-205, Oct 2022, Chihuahua, Chih. México

http:// electro.itchihuahua.edu.mx/revista

ISSN 1405-2172

202

to vary wildly. Therefore, proposals for tackling positional

variance were thoroughly studied.

An interesting network architecture is the Deformable Face

Network (DFN), which has the peculiarity of featuring a

“deformable module” consisting of a deformable convolutional

layer [6]. In contrast to regular convolutional layers, a

deformable convolutional layer is capable of adapting its

receptive field during training to better model certain geometric

transformations. The rationale behind this design choice is that

faces follow semi-rigid deformations, such as the change of

position. A regular convolutional layer would model

transformations only following a rigid square pattern.

DFN demands to be trained by inputting data in pairs of images

of the same class. It also makes use of three novel loss

functions: displacement consistency loss (DCL), identity

consistency loss (ICL) and pose triplet loss (PTL), which are

used as regularization terms to the Softmax loss, which

computes the output of the network, and is a common feature in

many different DNNs. DCL attempts to learn the displacement

fields, to produce a consistent output, while ICL constraints the

geometric distance between the output features produced by

each pair of input images to ensure similar identities produce

similar outputs. PTL was not considered for further

examination.

Although the Softmax loss is popular, further advances have

been made through margin loss. Margin loss rely on the

geometric representation of each training class on the network.

As they are dispersed across the representational hyperspace, a

margin is imposed between each pair of classes, squishing the

classes into narrower regions and further separating them from

each other. This serves to define a clearer decision boundary,

which separates each class. This is more clearly seen in the

Additive Margin Softmax loss[7] as shown in Fig. 2.

Figure 2. Softmax loss and Additive Margin Softmax loss.

Particular interest was given to the ArcFace loss, a margin loss

which makes use of two parameters to scale the

representational hyper-space and to impose a margin in the

angle measured between each class center in the hyper-space

[8]. These parameters, known as s and m, scale the total radius

of the hypersphere enclosing the representations and the

angular margin between each class center, respectively. DNN

training is highly influenced by these values. Unfortunately,

there is not much of a theoretical background for the

determination of appropriate parameter values, and some of the

better performing values have been found in a purely empirical

way. Generally, they are set to m=0.5 and s=64. An alternative

to calculate s give in [9] is based on the number of classes to

distinguish from:

𝑠 = √2 ∗ ln(𝐶 − 1)

(1)

4.2. DNN Training
For comparing the effectiveness of the architectures and loss

functions of interest, some DNNs were trained, featuring a few

differences between each other. DFN was implemented on its

lighter variant DFN-L, and compared against a ResNet-50 [10].

In the designed embedded vision system, face recognition relies

on the identities the DNN has been trained on, and it will rely

on re-training the DNN to add a new identity. Therefore,

particular concern was given to the training time of the

network.

All of the DNNs were trained on the VGGFace2 dataset, which

was created with the explicit purpose of collecting high quality

labeled images of faces in a wide variety of poses and of

featuring a diverse spread of ages and ethnical identities [11].

VGGFace2 is composed of 3.31 million images belonging to

9131 identities, with an average of 362.6 images per identity.

Alignment was performed on each image of VGGFace2, and

each of the images was cropped to a resolution of 122x122.

Since deep learning framework of choice is TensorFlow with

Keras used in tandem, the TensorFlow exclusive format

TFRecord was used for speeding up the training time by

applying it to the training datasets. A TFRecord essentially

converts each image in a dataset to a binary format which can

be mapped back to image format through a previously defined

parsing function. Each of these binary sets of data is gathered

into a single file, which can then be split to convenience. The

advantage of using TFRecords is that if we use the images

separately, each of them would need to be opened separately,

but since a TFRecord shard contains information of many

images, we can greatly reduce the performance impact of

opening them [12].

To monitor how much the capabilities of a network improve

while being trained, it is common to evaluate their performance

each time an epoch passes. An epoch is completed each time

the networks has run through the entirety of the training dataset

one time. The evaluation is usually performed by using a

validation dataset, which is a small split from the original

training dataset, and is kept for this purpose only. In other

words, the DNN is not trained on the validation dataset and is

used only for performance evaluation.

REVISTA ELECTRO, Vol. 44 pp. 200-205, Oct 2022, Chihuahua, Chih. México

http:// electro.itchihuahua.edu.mx/revista

ISSN 1405-2172

203

For the DFN-L training, the weights given to the ICL and DCL

regularization losses were 0.001 and 0.01, respectively. The

momentum and learning rate were continuously modified

through a One-Cycle Policy (OCP) training criteria of 20

epochs following the criteria used in [13]. As shown in Figure

3, DCL behaved in a marked parabolic way, increasing during

the first half of the training, until finally starting to get low later

on. After these 20 epochs, the DFN-L trained on VGGFace2

reaches a validation accuracy of around 82% as show in Figure

4. Then, we performed training for 4 more epochs with a

regular training regime using a Nesterov moment of 0.9 and a

reduced learning rate of 0.001, the model finally converges

with a validation accuracy of 87%, higher than those achieved

with other unconstrained data datasets in previous research.

Figure 3. DCL loss during DFN-L training (blue) and

validation (orange).

Figure 4. Training (blue) and validation (orange) accuracy

during 20 epochs of DFN-L training.

It became evident at this point that although the achieved

accuracy on DFN-L was unprecedented, it still ended up short

for a biometric system. Although it showed promise, in its

current form it’s too dependent on being trained with highly

constrained data, which is out of scope for the developed

embedded vision system. Focus was then shifted towards the

ResNet-50 architecture, and the impact of using an ArcFace

loss function. ArcFace constraints the representational

hyperspace through its parameters s and m, and is implemented

as a classification layer used as an alternative to fully connected

layers. Since it only affects the last layers of the architecture,

experiments were made by performing transfer learning of a

ResNet-50 previously trained on VGGFace2. This process

involves stripping the last network layer, the fully connected

classification layer, and replacing it with a new classification

layer. Afterwards, the rest of the model is frozen so that the

weights of layers other than the classification layer are not

further modified. Training is then resumed.

Since the formula in Eq. 1, for setting the Arcface

hyperparameter s, depends on the number of classes,

experiments were conducted to observe how much the

networks training is affected varying the number of classes.

They consisted in training the networks using two different

subsets of VGGFace2: one with 500 identities, and other with

20 identities. In regards to the second one, 4 more identities

were added, corresponding to subjects whose data was

collected locally following an uncontrolled methodology to

better approach the distribution within VGGFace2. A data

augmentation process was applied to the images to obtain a

total number of images for each identity similar to the average

of 362.6 per identity on VGGFace2. The different networks

trained using the ResNet-50 transfer learning approach and

their obtained results are displayed in Table 2. All of them

followed a regular training regime, using Stochastic Gradient

Descent with a learning rate of 0.1 and momentum of 0.9.

Table 2. ResNet-50 DNNs trained through transfer learning.

DNN Classification

Layer

Number of

Classes

Epochs Validation

Acc. (%)

1 ArcFace 24 6 98+

2 Fully connected 24 25 98+

3* ArcFace 500 35 55

4 Fully connected 500 9 99+

*DNN #3 was not trained up to convergence, since by the time

it reached 35 epochs only obtained a validation accuracy of

55%. This is enough to show that for a high number of classes,

ArcFace trains to slowly in comparison to traditional fully

connected classification layers.

The slow training speed of ArcFace with a high number of

classes is a significant handicap for a network that need to be

constantly re-trained, as stipulated on the designed embedded

vision system. In addition, no direct benefits over a regular

fully connected classification layer were observed. Due to

these reasons, ArcFace was considered a downgrade to a fully

connected layer, and will not be used.

5. PROGRAM PIPELINE
The developed program consists of a) acquire images from

surveillance cameras, b) detecting faces on them, c)

recognizing the detected faces, and e) registering date and time

of first detection. More specifically, after detecting one or more

faces through MTCNN, we obtain a region of interest for each

of them in the form of bounding box coordinates. Using those

coordinates, the program crops that specific region from the

input image and passes it to the ResNet-50 trained for face

REVISTA ELECTRO, Vol. 44 pp. 200-205, Oct 2022, Chihuahua, Chih. México

http:// electro.itchihuahua.edu.mx/revista

ISSN 1405-2172

204

recognition. This network will then assign the face to a class,

which correspond to an identity, by outputting a probability of

it belonging to each class. The sum of these probabilities is

always 100%. If the probability for one class is above a preset

confidence threshold, the recognition is taken as valid,

representing a potential sighting. Next, a routine similar to the

debouncing of a button is performed, which requires that we

reach a similar result in the pipeline recognizing the same face

for a given number of frames, which were set to a default of 8.

During this trial period, an adjustable number of failed

recognitions is allowed, set to a default of 3. A detailed flow

diagram of the system is shown in Figure 5. Since most DNNs

don’t have a perfect 100% accuracy, just like the ones used,

performing this filtering allows the avoidance of the small

incidence statistical inaccuracy.

Figure 5. Full program flowchart.

6. DEPLOYMENT TO EMBEDDED SYSTEM
The face recognition system was deployed to an embedded

system. Among the many embedded systems available on the

market, just a few of them are oriented towards the deployment

of software for computation intensive tasks such as deep neural

networks for computer vision applications. The Nvidia Jetson

embedded computing board series, which integrates a CPU,

GPU and other circuits in a single system, was created by

Nvidia for this explicit purpose. The developed program was

deployed to an Nvidia Jetson TX2 embedded device [14],

whose specs are displayed in Table 3.

Table 3. Nvidia Jetson TX2 specifications [14].
Feature Jetson TX2

CPU 4-core ARM Cortex A57 @ 2 GHz, 2-core Denver2 @

2 GHz

GPU 256-core Maxwell @ 1.3 GHz

Memory 8 GB 128-bit LPDDR4, 58.3 GB/s

Disk Storage 32 GB eMMC 5.1

Tensor Number --

Video Codification (1x) 4Kp60, (3x) 4K360, (4x) 1080p30, (8x) 1080p30

Video Decodification (2x) 4Kp60, (4x) 4Kp30, (7x) 1080p60

USB Ports (1x) USB 3.0 + (1x) USB 2.0

For further streamlining, the DNN used for face recognition

was converted from a TensorFlow model to a TensorRT model.

The latter is an SDK oriented to DNNs used in inference mode,

making extensive use of the CUDA library to create high

performance GPU-accelerated applications. Also, in

comparison to TensorFlow, TensorRT has a smaller memory

consumption, which aids in maintaining a lean resource

footprint.

With the face recognition software deployed in its entirety to

the embedded device, it was connected to the surveillance

camera system described in section 2 through Ethernet

connection. Although, to register sighted people, no peripherals

aside from the cameras are needed, it is necessary to interface

with the embedded system in order to run the program. This is

achieved via a monitor, keyboard, and mouse connected

through physical ports in the Nvidia Jetson TX2 embedded

board.

7. EXPERIMENTS AND RESULTS
Two programs were written: one which performs the passive

registering of the recognized identities in the image sequences,

and one intended for demonstrating the internal process of the

face recognition software. In the later, instead keeping a

registry, it displays on screen the detected faces and their

corresponding predicted identity on top of the original input

image. The two programs will henceforth be referred to as the

registration program and the demonstration program,

respectively.

The face recognition system based on ResNet50 architecture

provides an accuracy of 98.83% on the validation data set,

according to the experiments shown in Table 2. When testing

with data acquired in real time, the system correctly recognized

the identities of the persons in the database, having only one

false positive when the face detected was in an almost lateral

view. Figure 6 shows a person recognized from the two camera

images at different times and Figure 7 show the recognition of

two persons from two camera images, both using the

demonstration program. Figure 8 shows some records in a CSV

file made by the registration program.

Figure 6. Face recognition from two cameras.

REVISTA ELECTRO, Vol. 44 pp. 200-205, Oct 2022, Chihuahua, Chih. México

http:// electro.itchihuahua.edu.mx/revista

ISSN 1405-2172

205

Figure 7. Recognition of two subjects from two cameras.

Figure 8. CSV file with sighting records.

While using just one camera, running either the demonstration

program or the registration program, the system achieves a

speed performance of around 5 FPS while using up 2 GB of

memory in addition to the passive memory use of the

embedded board, out of the 8 GB available. This accounts for

around 60% of the total memory. Using two cameras drops this

speed performance to around 4 FPS, with an only marginally

higher memory consumption.

8. CONCLUSIONS
A prototype of an embedded vision system was developed,

capable of detecting faces in image sequences obtained from

surveillance cameras, and of recognizing the identity of people

registered in a dataset. The system keeps a registry of the

people accessing a monitored area. The software developed

consisted of a face detection module based on MTCNN and a

face recognition module implementing a DNN, different

architectures and loss functions such as the DFN-L network and

ArcFace loss functions were compared through training

experiments showing long training periods. They were

discarded in favor of the ResNet-50 architecture, which proved

significantly faster to re-train. ResNet-50 was pre-trained on the

VGGFace2 dataset and later on trained through transfer

learning on a dataset created with some identities from

VGGFace2 and added new identities collecting data locally.

According to the experiments carried out, the face recognition

system based on ResNet50 architecture provided an accuracy of

98.83% on the validation data set.

A filtering algorithm was written to discard false positives

obtained through the face recognition software across multiple

frames, ensuring a proper registering of the identities

recognized. While deployed on an Nvidia Jetson TX2

embedded board, the system used up only around 60% of its

resources and kept a near real-time performance while using

two cameras, allowing more cameras to be connected.

9. REFERENCES

[1] A. Jain, R. Bolle, S. Pankati, Biometrics: Personal Identification in

Networked Society. Norwell, MA: Kluwer Academic Publishers, 1999.

[2] L. Masupha, T. Zuva, S. Ngwira, O. Esan. “Face recognition Techniques,

their Advantages, Disadvantages and Performance Evaluation”, 2015
International Conference on Computing, Communication and Security

(ICCCS)

[3] P. Viola, M. Jones, “Rapid object detection using a boosted cascade of
simple features”, Proceedings of the 2001 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, Kauai, HI,

USA, 8–14 December 2001
[4] K. Zhang, Z. Zhang, Z. Li and Y. Qiao, "Joint Face Detection and

Alignment Using Multitask Cascaded Convolutional Networks," in IEEE

Signal Processing Letters, vol. 23, no. 10, pp. 1499-1503, Oct. 2016, doi:
10.1109/LSP.2016.2603342.

[5] Y. LeCun and Y. Bengio, ‘‘Convolutional networks for images, speech,

and time series,’’ in The Handbook of Brain Theory and Neural
Networks, A. A. Michael, Ed. Cambridge, MA, USA: MIT Press, 1998,

pp. 255–258.

[6] M.He, J. Zhang, S. Shan, M. Kan, X. Chen, “Deformable face net for pose
invariant face recognition”, in Pattern Recognition, 107113. doi:

10.1016/j.patcog.2019.1071, 2019.

[7] F. Wang, J. Cheng, W. Liu and H. Liu, "Additive Margin Softmax for
Face Verification," in IEEE Signal Processing Letters, vol. 25, no. 7, pp.

926-930, July 2018, doi: 10.1109/LSP.2018.2822810.
[8] J. Deng, J. Guo, N. Xue, S. Zafeiriou, “ArcFace: Additive Angular

Margin Loss for Deep Face Recognition”, in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 2019, pp. 4690-4699

[9] X. Zhang, R. Zhao, Y. Qiao, X. Wang, H. Li, “AdaCos: Adaptively

Scaling Cosine Logits for Effectively Learning Deep Face
Representations”, in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 2019, pp. 10823-

10832
[10] K. He, X. Zhang, S. Ren, J. Sun. "Deep Residual Learning for Image

Recognition". Proceedings of the IEEE Computer Vision and Pattern

Recognition, 2016. p. 770-778.
[11] Q. Cao, L. Shen, W. Xie, O. M. Parkhi and A. Zisserman, "VGGFace2: A

Dataset for Recognising Faces across Pose and Age," 2018 13th IEEE

International Conference on Automatic Face & Gesture Recognition (FG
2018), 2018, pp. 67-74, doi: 10.1109/FG.2018.00020.

[12] “TFRecord and tf.train.Example”, TensorFlow Core, 2021. [Online]

Available at: https://www.tensorflow.org/tutorials/load_data/tfrecord
[Last Accessed: 12/22/2021]

[13] L. N. Smith, " A disciplined approach to neural network hyper-

parameters: Part 1 --learning rate, batch size, momentum, and weight
decay”. arXiv preprint arXiv:1803.09820, 2018.

[14] “Jetson TX2 Module”, NVIDIA Developer, 2018. [Online] Available at:

https://developer.nvidia.com/embedded/jetson-tx2 [Last Accessed:
11/27/2019]

https://ieeexplore.ieee.org/xpl/conhome/7366893/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7366893/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7366893/proceeding

