Revista ELECTRO
Vol. 42 – Año 2020
Artículo
TÍTULO
Estrategias para la Alimentación Continua de Nodos Sensores Inalámbricos en Espacios Interiores
AUTORES
Hazas Izquierdo Raúl Gilberto, Hoyo Montaño José Antonio
RESUMEN
Las redes inalámbricas de sensores (WSN, por sus siglas en inglés) constituyen el elemento fundamental del Internet de las Cosas al integrar sistemas de monitoreo para automatización de viviendas, sistemas de gestión de energía, atención médica, entre otros. No obstante, la operación de la red se ve limitada debido a la alimentación de los nodos mediante baterías. Últimamente ha habido un gran énfasis en la cosecha de energía dentro de la literatura científica como una m anera de extender la vida útil de la red. En este artículo se analizan posibles fuentes de energía dentro de ambientes interiores. Se identificó a la cosecha de energía de RF mediante una rectena como la opción más apropiada a los requerimientos de la esfe ra de interés. Se evaluó la eficiencia de diseños previos de rectenas y se propone una solución que resuelv e deficiencias previas: bajos voltajes de salida y reducción de armónicos resultantes de la rectificación.
Palabras Clave: redes inalámbricas de sens ores, cosecha de energía, rectenas, multiplicadores tipo Grenacher.
ABSTRACT
Wireless sensor networks (WSN) play a major role as the building block for the Internet of Things (IoT) enabling systems for monitoring purposes being home automation, building energy management, healthcare, among others. Yet, their operation is hampered b y energy challenges due to battery powering for the sensing nodes. Currently, there has been ample emphasis in the literature on energy harvesting as a means to maintaining the network lifetime. Suitable energy sources have been analyzed within the design domain of indoor dwellings. RF energy harvesting by means of a rectenna has been identified as the better fit to the domain’s requirements. Later, an evalua tion of the efficiency and output voltage of previous rectennas designs has been performed, and a ne w proposal that might solve two of previous solutions’ drawbacks: low output voltage and rectification-resulting harmonics that compromise the overall efficiency, i s proposed.
Keywords: wireless sensor networks, energy harvesting, rectennas, Grenacher mult ipliers.
REFERENCIAS
[1] César Roberto Encinas Realiva zquez, Erica Cecilia Ruiz Ibarra, Adolfo Espinoza Ruiz, Armando García Berumen, Ramón René Palacio Cinco, Joaquín Cortez González, “Desarrollo de Proyectos con Internet de las cosas”, Primera edición, Pearson Educación de México, S.A. de C.V., México, 2018.
[2] Roberto Verdone, Davide Dardari, Gianluca Mazzini and Andrea Conti, “Wireless Sensor and Actuator Networks: Technologies, Analysis and Design”, Academic Press, Great Britain, 2008.
[3] Kazmi Aqeel H., Michael J. O’Grady, Declan T. Delaney, Antonio G. Ruzzelli, and Gregory M. P. O’hare, “A Review of Wireless-Sensor-Network-Enabled Building Energy Management Systems”, ACM Transactions on Sensor Networks, Volume: 10, Issue:4, Article: 66, J un. 2014.
[4] Nugraha, G. Musa, A., Cho, J., Park, K., and Choi D., “Lambda-Based Data Processing Architecture for Two-Level Load Forecasting in Residential Buildings”, Energies, Volume: 11, Issue: 4, 772, Mar. 2018.
[5] Mihajlovic, V. Milosavljevic, A. Joza, and M. Damnjanovic, “Modular WSN node for environmental monitoring with energy harvesting support,” in 2017 Zooming Innovation in Consumer Electronics International Conference (ZINC), IEEE, 2017, pp. 41 –44.
[6] Chen, Y., and Zhao Q., “On the Lifetime of Wireless S ensor Networks”, IEEE Communications Letters, vol. 9, no. 11, Nov. 2005.
[7] Ayadi, H., Zouinkhi, A., Val, T., Van den Bossche, A., and Abdelkrim, M.N., “Network Lifetime Management in Wireless Sensor Networks”, IEEE Sensors Journal, vol. 18, No. 15, Aug. 1, 2 018.
[8] Felicia Engmann, Ferdinand A. Katsriku, Jamal-Deen Abdulai, K.S. Adu-Manu, and Frank K. Banaseka, “Prolonging the Lifetime of Wireless Sensor Networks: A Review of Current Techniques”, Wireless Communications and Mobile Computing, vol. 2018, Article I D 8035065, 23 pages, Wiley-Hindawi, https://doi.org/10.1155/2018/8035065.
[9] Shaikh, F.K., and Zeadally, S., “Energy harvesting in wireless sensor Figura 10 Transistores MOS como rectificadores (adaptado de [42 y 44]). networks: A comprehensive review”, Renewable and Sustainable Energy Reviews, vol. 55, pp. 1041-1054, Elsevier, 2016.
[10] Romer, K., and Mattern, F., “The design space of wireless sensor networks”, IEEE Wireless Communications, vol. 11, issue: 6, pp. 54-61, Dec. 2004.
[11] Kappler C., Riegel G. (2004) A Real-World, Simple Wireless Sensor Network for Monitoring Electrical Energy Consumption. In: Karl H., Wolisz A., Willig A. (eds) Wireless Sensor Networks. EWSN 2004. Lecture Notes in Computer Science, vol 2920. Springer, Berlin, Heidelberg
[12] Dr. P. C. Jain, “Recent Trends in Energy Harvesting for Gre en Wireless Sensor Networks”, 2015 International Conference on Signal Processing and Communication (ICSC), IEEE, 2015.
[13] Akhtar, F., and Rehmani, M.H. “Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor netw orks: A review”, Renewable and Sustainable Energy Reviews, vol: 45, pp. 769-784, Elsevier, May 2015.
[14] A.S.M. Zahid Kausar, Reza, A.W., Saleh, M.U., and Ramiah, H., “Energizing wireless sensor networks by energy harvesting systems: Scopes, challenges and app roaches”, Renewable and Sustainable Energy Reviews, vol. 38, pp. 973-989, Elsevier, 2014.
[15] Gilbert James M., and Farooq Balouchi, “Comparison of Energy Harvesting Systems for Wireless Sensor Networks”, IEEE International Journal of Automation and Computing, Volume: 5, Issue: 4, pp. 334 – 347, Oct. 2008.
[16] Brown, W.C., “The History of Power Transmission by Radio Waves”, IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 9, Sep. 1984, pp. 1230-1242.
[17] N. Tesla, “The transmission of electrical energy without wires as a means for furthering peace,” in Electrical World and Engineer, vol. 1. Jan. 1905, pp. 21–24, [en línea ] disponible: https://oxca.pw/index449630.pdf, visitado 02/06/20.
[18] Brinster, I., Lohn, J., Linden, D., “An Evolved Rectenna For Sensor Networks”, IEEE Antennas and Propagation Society International Symposium (APSURSI), 2013.
[19] Bhatti, N.A., Alizai, M.H., Syed, A.A., Mottola, L., “Energy Harvesting and Wireless Transfer in S ensor Network Applications: Concepts and Experiences”, ACM Transactions on Sensor Networks, vol.:12, issue: 3, Article 24, Aug. 2016.
[20] Varghese, B., Easow John, N., Sreelal, S., Gopal, K., “Design and development of an RF energy harvesting wireless sensor n ode (EH-WSN) for aerospace applications”, Procedia Computer Science, 93 (2016) 230 – 237.
[21] Mitcheson, P.D., Lucyszyn, S., Pinuela-Rangel, M., Yates, D.C., Drayson Technologies Limited, 2016, RF Energy Harvester, US Patent 2016/0181873 A1.
[22] Zhang, X., et al, “Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting”, Nature, Vol. 566, Feb. 2019, pp. 368-372.
[23] Nahas, J.J., “Modeling and Computer Simulation of a Microwave to DC Energy Conversion Element”, IEEE Transactions on Microwave Theory and Techniques, Vol. 23, No. 12, Dec. 1975, pp. 1030-1035.
[24] Yoo, T.W., and Chang, K., “Theoretical and Experimental Development of 10 and 35 GHz Rectennas”, IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 6, Jun. 1992, pp. 1259-1266.
[25] McSpadden, J.O., Fan, L., Chang, K., “Design and Experiments of a High Conversion Efficiency 5.8-GHz Rectenna”, IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 12, Dec. 1998, pp. 2053-2060.
[26] Suh, Y.H., Chang, K., “A High Eff iciency Dual Frequency Rectenna for 2.45-and 5.8-GHz Wireless Power Transmission”, IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 7, Jul. 2002, pp. 1784-1789.
[27] Eid, A., Hester, J., Constantine, J., Tawk, Y., Ramadan, A.H., Tentzeris, M.M., “A Compact Source-Load Agnostic Flexible Rectenna Topology For IoT Devices”, IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, Apr. 2020, pp. 2621-2629.
[28] Fan, S., Y uan, Z., Gou, W., Zhao, Y., Song, C., Huang, Y., Zhou, J., Geng, L., “A 2.45 GHz Rectifier Booster Regulator With Impedance Matching Converters For Wireless Energy Harvesting”, IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 9, Sep. 2019, pp. 3833-3843.
[29] McSpadden, J., Yoo, T.W., and Chang, K., “Theoretical and Experimental Investigation of a Rectenna Element for Microwave Power Transmission”, IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 12, Dec. 1992, pp. 2359-2366.
[30] Akkermans, J.A.G., Van Beurden, M.C., Doodeman, G.J.N., Visser, H.J., “Analytical Models for Low Power Rectenna Design”, IEEE Antennas and Wireless Propagation Letters, Vol. 4, 2005, pp. 187-190.
[31] Sun, H.C., Guo, Y.X., Zhong, Z., “A High Sensitivity 2.45 GHz Rectenna For Low Input Power Energy Harvesting”, IEEE Antennas and Propagation Society International Symposium (APSURSI), 2012.
[32] Hagerty, J.A., Helmbrecht, F., McCalpin, W.H., Zane, R., Popović, Z.B., “Recycling Ambient Microwave Energy with Broad-Band Rectenna Arrays”, IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 3, Jul. 2004, pp. 1014-1789.
[33] Nie, M.J., Yang, X.X., Tan, G.N., Han, B., “A Compact 2.45-GHz Broadband Rectenna Us ing Grounded Coplanar Waveguide”, IEEE Antennas and Wireless Propagation Letters, Vol. 14, 2015, pp. 986-989.
[34] Yang, X.X., Jiagn, C., Elsherbeni, A.Z., Yang, F., Wang, Y.Q., “A Novel Compact Printed Rectenna For Data Communication Systems”, IEEE Transaction s on Antennas and Propagation, Vol. 61, No. 5, May 2013, pp. 2532-2539.
[35] Huang, Y., Shinohara, N., Toromura, H., “A Wideband Rectenna for 2.4 GHz Band RF Energy Harvesting”, IEEE Wireless Power Transfer Conference (WPTC), 2016.
[36] Ren, Y.J., Chang, K.,” New 5.8-GHz Circularly Polarized Retrodirective Rectenna Arrays for Wireless Power Transmission”, IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 7, Jul. 2006, pp. 2970-2976.
[37] Bai, X., Zhang, J.W., Xu, L.J., “Design of RF Energy Harvesting and Transfer System”, IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2018.
[38] Takhedmit, H., Cirio, L., Bellal, S., Delcroix, D., Picon, O., “Compact and Efficient 2.45 GHz Circularly Polarised Shorted Ring-Slot Rectenna”, IET Electronic Letters, Vol. 48, No. 5, March 1, 2012, pp. 253-254.
[39] Brinster, I., Lohn, J., Linden, D., “An Ev olved Rectenna For Sensor Networks”, IEEE Antennas and Propagation Society International Symposium (APSURSI), 2013.
[40] Ren, Y.J., Farooqui, M.F., Chang, K., “A Compact Dual Frequency Rectifying Antenna with High Orders Harmonic Rejection”, IEEE Transactions on Antennas and Propagation, Vol. 55, No. 7, Jul. 2007, pp. 2110-2113.
[41] Donchev, E., et al, “The Rectenna Device – from theory to practice (a Review)”, Materials Research Society Energy & Sustainability – A Review Journal, 1, 2014. Doi:10.1557/mre.2014.6. Of ficial URL: http://dx.doi.org/10.1557/mre.2014.6.
[42] Curty, J.P., Joehl, N., Krummenacher, F., Dehollain, C., Declerq, M.J., “A Model for µ-Power Rectifier Analysis and Design”, IEEE Transactions on Circuits and Systems-I: Regular Papers, Vol. 52, No. 12, Dec. 2005.
[43] Chouhan, S.S., Nurmi, M., Halonen, K., “Efficiency Enhanced Voltage Multiplier Circuit for RF Energy Harvesting”, Microelectronics Journal, Vol. 48, 2016, pp. 95 –102.
[44] Li, Z., Li, J., Zhou, J., Zhao, F., Wen “Ultra Low Power High Efficiency UHF Band Wireless Energy Harvesting Circuit Design and Experiment”, ZTE Communications, Vol. 16, No. 1, pp. 2-10. doi: 10.3969/j.issn.1673-5188.2018.01
CITAR COMO:
Hazas Izquierdo Raúl Gilberto, Hoyo Montaño José Antonio, "Estrategias para la Alimentación Continua de Nodos Sensores Inalámbricos en Espacios Interiores", Revista ELECTRO, Vol. 42, 2020, pp. 165-170.
VERSIÓN PDF